论文部分内容阅读
目的目前2D表情识别方法对于一些混淆性较高的表情识别率不高并且容易受到人脸姿态、光照变化的影响,利用RGBD摄像头Kinect获取人脸3D特征点数据,提出了一种结合像素2D特征和特征点3D特征的实时表情识别方法。方法首先,利用3种经典的LBP(局部二值模式)、Gabor滤波器、HOG(方向梯度直方图)提取了人脸表情2D像素特征,由于2D像素特征对于人脸表情描述能力的局限性,进一步提取了人脸特征点之间的角度、距离、法向量3种3D表情特征,以对不同表情的变化情况进行更加细致地描述。为了提高算法对混淆性高