其他文献
当天宫一号在太空中轻舞飞扬的时候,它曼妙的身姿在空中秀下优美的曲线。的确,高中教材中的圆锥曲线是既有美感又有数感的曲线,是解析几何研究的重点。从高考的角度来讲,解析几何是高中数学的核心内容,是高考命题的热点之一,是高考区分考生水平的重点载体,它的显著特点是用代数的方法研究解决几何问题,它的重点是用数形结合的思想把几何问题转化为代数问题。因此,解析几何问题一般伴有较为复杂的数式运算,对考生的运算能力
圆锥曲线问题是中学数学的核心内容之一,在高考数学中占有十分重要的地位。多年来,在江苏高考中多以中档题出现,对于考生分析问题、解决问题、计算技巧等各个方面的能力要求相对较高。圆锥曲线,是你让我变得“无从下手”,你是我心中永远的“痛”。痛定思痛之后,希望本文能伴你找到属于你的“痛点”! 类型一椭圆方程的求解,直线和椭圆的位置关系 【例1】在平面直角坐标系xOy中,已知椭圆C1:x2a2+y2b2=
在苏教版《必修2》教材中,有这样一个问题:“已知点M(x,y)与两个定点O(0,0),A(3,0)的距离之比为12,那么点M的坐标满足什么关系?画出满足条件的点M所形成的曲线”。通过计算M的轨迹方程为:(x+1)2+y2=4,轨迹为圆,这个圆称为阿波罗尼斯圆,简称阿氏圆。也就是说,到两个定点的距离之比为常数(常数不为1)的动点的轨迹为阿氏圆,它取决于两个定点和一个比值。在高考题和模拟题中,有不
解析几何题目是每年必考题型,主要体现在解析几何知识内的综合及与其他知识之间的综合,高考中一般是一道填空题和一道解答题,填空题主要考查圆锥曲线的定义和性质,而解答题主要考查直线与圆锥曲线的位置关系,同时可能与平面向量、导数相交汇,每个题一般设置了两到三个小问题,第一问一般考查曲线方程的求法,主要利用定义法与待定系数法求解,而第二、第三问主要涉及定值问题、最值问题、对称问题、轨迹问题、探索性问题、参数
1. 已知集合M={x|5-|2x-3|∈N*},则M的所有非空真子集的个数是___.
“认识数学的应用价值,发展数学的应用意识,形成数学应用的能力”是新课程的基本理念和重要目标之一,为了体现新课程的理念和要求,近几年的高考数学命题,常以旅游、环保、人口、经济、安全、资源等社会热点问题为背景,命制贴近课本、贴近生活的实际应用题,考查运用数学知识解决简单实际问题的能力。因此,在高考复习中,关注社会热点问题,提高数学应用能力是一个需要致力解决的问题。下面,以直线与圆的方程为例,作一些剖析
在解题中,首先确定直线和圆的几何要素;其次掌握好直线方程的各种形式及其适用范围、圆的标准方程和一般方程;第三掌握好直线与直线的位置关系、点到直线的距离,直线与圆、圆与圆的位置关系;最后要充分重视平面几何知识在解决直线与圆问题中的作用。 类型1:对直线倾斜角及斜率的概念理解 【例1】 设直线l的倾斜角为θ,满足条件sinθ+cosθ=15,又直线通过定点M(1,1),则
椭圆的离心率是描述椭圆“扁平”程度的一个重要的量,e越大,ba越小,椭圆越扁;反之e越小, ba越大,椭圆越圆。而以考查离心率为切入点的试题在高考中常常出现。对于椭圆的离心率范围的确定,由其定义可知e=ca=1-ba2=11+bc2,关键是设法建立关于a,b,c的齐次方程或者齐次不等式,然后将其转化成关于离心率e的方程或不等式,下面结合几个实例谈谈这类问题的解题策略,供同学们学习参考。
最值问题是数学中的典型问题,解最值问题的基本方法一般有两种:几何法、代数法。具体可利用直接法、二次函数法、函数的单调性、重要不等式、数形结合、三角函数有界性等方法,还可以利用向量、导数等。圆锥曲线中最值问题和数学中其他最值问题一样,解法灵活,综合性较强。解圆锥曲线中最值问题不仅要紧紧把握圆锥曲线的定义,而且要善于综合运用代数、平几、三角等相关知识。 一、 利用圆锥曲线的定义求最值
高中数学几何问题主要包括立体几何和解析几何两大部分,它们构成了高考的两大主体考点,随着近年来对高考研究的不断深入,一大批格调清新、设计独特的几何问题在高考和平时的模考中闪亮登场。这些问题推陈出新,题型新颖,值得我们去认真探究。本文推出以下相关的几何问题供读者赏析,希望对大家有所启发和帮助。 【例1】(原创题)过直线l:y=2x上一点P作圆M:(x-3)2+(y-2)2=45的两条切线l1,l2,