论文部分内容阅读
Accurately estimating load distributions and ground responses around underground openings play a sig-nificant role in the safety of the operations in underground mines. Adequately designing pillars and other support measures relies highly on the accurate assessment of the loads that will be carried by them, as well as the load-bearing capacities of the supports. There are various methods that can be used to approx-imate mining-induced loads in stratified rock masses to be used in pillar design. The empirical methods are based on equations derived from large databases of various case studies. They are implemented in government approved design tools and are widely used. There are also analytical and numerical tech-niques used for more detailed analysis of the induced loads. In this study, two different longwall mines with different panel width-to-depth ratios are analyzed using different methods. The empirical method used in the analysis is the square-decay stress function that uses the abutment angle concept, imple-mented in pillar design software developed by the National Institute for Occupational Safety and Health (NIOSH). The first numerical method used in the analysis is a displacement-discontinuity (DD) variation of the boundary element method, LaModel, which utilizes the laminated overburden model. The second numerical method used in the analysis is Fast Lagrangian Analysis of Continua (FLAC) with the numerical modeling approach recently developed at West Virginia University which is based on the approach developed by NIOSH. The model includes the 2D slice of a cross-section along the width of the panel with the chain pillar system that also includes the different stratigraphic layers of the over-burden. All three methods gave similar results for the shallow mine, both in terms of load percentages and distribution where the variation was more obvious for the deep cover mine. The FLAC3D model was observed to better capture the stress changes observed during the field measurements for both the shallow and deep cover cases. This study allowed us to see the shortcomings of each of these different methods. It was concluded that a numerical model which incorporates the site-specific geology would provide the most precise estimate for complex loading conditions.