论文部分内容阅读
与有关组合的应用题在高考中比较常见,其解题规律一般是根据问题的任务或内容,对所求事件设计出“合理的分组方案”, 恰当的进行分类,准确的计算。
一、“至多、至少”分配型
例1、将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有( )
(A)30种 (B)90种 (C)180种 (D)270种
解析:将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则将5名教师分成三组,一组1人,另两组都是2人,有C15C24/A22种方法,再将3组分到3个班,共有15A33种不同的分配方案,选B;
点评:含有“至多、至少”的题目一般采用合理分类,结合排列组合知识求解。
二、小球入盒型
例2、将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( )
A.10种B.20种 C.36种 D.52种
解析:将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,分情况讨论:①1号盒子中放1个球,其余3个放入2号盒子,有C14=4种方法;②1号盒子中放2个球,其余2个放入2号盒子,有C26=6种方法;则不同的放球方法有10种,选A。
点评:计数原理是解决较为复杂的排列组合问题的基础,应用计数原理结合。
三、有限制条件型
例3、某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,则不同的选派方案共有 种;
解析:(1)可以分情况讨论,① 甲去,则乙不去,有C36A44=480种选法;②甲不去,乙去,有C36A44=480种选法;③甲、乙都不去,有A46=360種选法;共有1320种不同的选派方案
点评:分类要不重不漏,而且先组合后排列是解决排列组合问题常规的思路。
四、排列组合综合型
例4、平面上给定10个点,任意三点不共线,由这10个点确定的直线中,无三条直线交于同一点(除原10点外),无两条直线互相平行。求:(1)这些直线所交成的点的个数(除原10点外)。(2)这些直线交成多少个三角形。
解法一:(1)由题设这10点所确定的直线是C102=45条。
这45条直线除原10点外无三条直线交于同一点,由任意两条直线交一个点,共有C452个交点。而在原来10点上有9条直线共点于此。所以,在原来点上有10C92点被重复计数;
所以这些直线交成新的点是:C452-10C92=630。
(2)这些直线所交成的三角形个数可如下求:因为每个三角形对应着三个顶点,这三个点来自上述630个点或原来的10个点。所以三角形的个数相当于从这640个点中任取三个点的组合,即C6403=43486080(个)。
解法二:(1)如图对给定的10点中任取4个点,四点连成6条直线,这6条直线交3个新的点。故原题对应于在10个点中任取4点的不同取法的3倍,即这些直线新交成的点的个数是:3C104=630。
(2)同解法一。
点评:用排列、组合解决有关几何计算问题,除了应用排列、组合的各种方法与对策之外,还要考虑实际几何意义。
一、“至多、至少”分配型
例1、将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有( )
(A)30种 (B)90种 (C)180种 (D)270种
解析:将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则将5名教师分成三组,一组1人,另两组都是2人,有C15C24/A22种方法,再将3组分到3个班,共有15A33种不同的分配方案,选B;
点评:含有“至多、至少”的题目一般采用合理分类,结合排列组合知识求解。
二、小球入盒型
例2、将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( )
A.10种B.20种 C.36种 D.52种
解析:将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,分情况讨论:①1号盒子中放1个球,其余3个放入2号盒子,有C14=4种方法;②1号盒子中放2个球,其余2个放入2号盒子,有C26=6种方法;则不同的放球方法有10种,选A。
点评:计数原理是解决较为复杂的排列组合问题的基础,应用计数原理结合。
三、有限制条件型
例3、某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,则不同的选派方案共有 种;
解析:(1)可以分情况讨论,① 甲去,则乙不去,有C36A44=480种选法;②甲不去,乙去,有C36A44=480种选法;③甲、乙都不去,有A46=360種选法;共有1320种不同的选派方案
点评:分类要不重不漏,而且先组合后排列是解决排列组合问题常规的思路。
四、排列组合综合型
例4、平面上给定10个点,任意三点不共线,由这10个点确定的直线中,无三条直线交于同一点(除原10点外),无两条直线互相平行。求:(1)这些直线所交成的点的个数(除原10点外)。(2)这些直线交成多少个三角形。
解法一:(1)由题设这10点所确定的直线是C102=45条。
这45条直线除原10点外无三条直线交于同一点,由任意两条直线交一个点,共有C452个交点。而在原来10点上有9条直线共点于此。所以,在原来点上有10C92点被重复计数;
所以这些直线交成新的点是:C452-10C92=630。
(2)这些直线所交成的三角形个数可如下求:因为每个三角形对应着三个顶点,这三个点来自上述630个点或原来的10个点。所以三角形的个数相当于从这640个点中任取三个点的组合,即C6403=43486080(个)。
解法二:(1)如图对给定的10点中任取4个点,四点连成6条直线,这6条直线交3个新的点。故原题对应于在10个点中任取4点的不同取法的3倍,即这些直线新交成的点的个数是:3C104=630。
(2)同解法一。
点评:用排列、组合解决有关几何计算问题,除了应用排列、组合的各种方法与对策之外,还要考虑实际几何意义。