论文部分内容阅读
KNN是基于实例的算法,训练样本的数量影响KNN的分类性能.合理的样本剪裁可以提高分类器的效率.提出了一种聚类条件下基于密度的KNN改进模型.首先使用聚类方法对训练集进行基于类别的选择,裁剪边缘样本以减少噪音;再基于类别密度对样本进行加权,改善k近邻选择时大类别、高密度训练样本的占优现象.试验结果表明,本文提出的改进KNN分类算法提高了KNN的分类效率.