Role of microtubule dynamics in Wallerian degeneration and nerve regeneration after peripheral nerve

来源 :中国神经再生研究(英文版) | 被引量 : 0次 | 上传用户:zcb999999999
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Wallerian degeneration, the progressive disintegration of distal axons and myelin that occurs after peripheral nerve injury, is essential for creating a permissive microenvironment for nerve regeneration, and involves cytoskeletal reconstruction. However, it is unclear whether microtubule dynamics play a role in this process. To address this, we treated cultured sciatic nerve explants, an in vitro model of Wallerian degeneration, with the microtubule-targeting agents paclitaxel and nocodazole. We found that paclitaxel-induced microtubule stabilization promoted axon and myelin degeneration and Schwann cell dedifferentiation, whereas nocodazole-induced microtubule destabilization inhibited these processes. Evaluation of an in vivo model of peripheral nerve injury showed that treatment with paclitaxel or nocodazole accelerated or attenuated axonal regeneration, as well as functional recovery of nerve conduction and target muscle and motor behavior, respectively. These results suggest that microtubule dynamics participate in peripheral nerve regeneration after injury by affecting Wallerian degeneration. This study was approved by the Animal Care and Use Committee of Southern Medical University, China (approval No. SMU-L2015081) on October 15, 2015.
其他文献
Neurotrophins have been recognized for decades for their beneficial effects on growth, survival, and maintenance in the central nervous system, all of which suggest potential therapeutic utility. Although understanding and harnessing the activity of neuro
期刊
Alzheimer\'s disease (AD) is a progressive neurodegenerative condition that goes from mild cognitive impairment in prodromal disease to severely disabling deficits in advanced stages. The risk for AD development, as well as progression and severity, cle
期刊
The dying-back hypothesis holds that the damage to neuromuscular junctions and distal axons in amyotrophic lateral sclerosis occurs at the earliest stage of the disease. Previous basic studies have confirmed early damage to neuromuscular junctions, but it
Our previous study has shown that the transcription factor Krüppel-like factor 7 (KLF7) promotes peripheral nerve regeneration and motor function recovery after spinal cord injury. KLF7 also participates in traumatic brain injury, but its regulatory mecha
Studies in animals indicate that sevoflurane exposure in the second trimester of pregnancy has harmful effects on the learning and memory of offspring.Whether an enriched environment can reverse the damage of sevoflurane exposure in the second trimester o
Subthreshold depression is a highly prevalent condition in adolescents who are at high risk for developing major depressive disorder. In preclinical models of neurological and psychiatric diseases, Lycium barbarum polysaccharide (LBP) extracted from Goji
Cellular senescence and proliferation are essential for wound healing and tissue remodeling. However, senescence-proliferation cell fate after peripheral nerve injury has not been clearly revealed. Here, post-injury gene expression patterns in rat sciatic
SNCA, GBA, and VPS35 are three common genes associated with Parkinson\'s disease. Previous studies have shown that these three genes may be associated with Alzheimer\'s disease (AD). However, it is unclear whether these genes increase the risk of AD i
Osteopontin (OPN) is an extracellular matrix protein with a diverse range of functions, including roles in cell adhesion, migration, and immunomodulation, which are associated with the modulation of neuroinflammation in the central nervous system. The pre
Retinitis pigmentosa is a retinal disease characterized by photoreceptor degeneration. There is currently no effective treatment for retinitis pigmentosa. Although a mixture of lutein and other antioxidant agents has shown promising effects in protecting