论文部分内容阅读
极限是高等数学教学的重点和难点。以数列极限为例说明之,学生对数列极限概念理解的障碍是如何将极限的“描述性”定义转化为教材中的“ε-N”定义:借助于“任意小”的正数“ε”及“任意大”的正数“M”可将定义中模糊部分变得精确,完成极限概念从“描述性”到“精确性”的转化;通过实例进一步讲清“ε”与”M”关联性:M=M(ε),完成极限概念从“精确”向“完美”的转化,并针对数列极限的特殊性引入N=[M(ε)],最终得出教材中的“ε—N”定义,对于函数极限概念也可按类似思路得出。