论文部分内容阅读
支持向量机(SVM)算法在训练集的规模很大特别是支持向量很多时,支持向量机的学习过程需要占用大量的内存,算法的速度较慢。为此,笔者提出一种新的SVM快速分类算法。该算法通过选择边界向量,构造新的训练样本,减少了参与训练的样本数目。实验证明,该算法不仅能保证原算法的精度,具有良好的推广能力,而且提高了算法的速度。