论文部分内容阅读
针对遥感图像场景分类面临的类内差异性大、类间相似性高导致的部分场景出现分类混淆的问题,该文提出了一种基于双重注意力机制的强鉴别性特征表示方法。针对不同通道所代表特征的重要性程度以及不同局部区域的显著性程度不同,在卷积神经网络提取的高层特征基础上,分别设计了一个通道维和空间维注意力模块,利用循环神经网络的上下文信息提取能力,依次学习、输出不同通道和不同局部区域的重要性权重,更加关注图像中的显著性特征和显著性区域,而忽略非显著性特征和区域,以提高特征表示的鉴别能力。所提双重注意力模块可以与任意卷积神经网