基于拓扑分析的区域级网络抗毁性研究

来源 :通信学报 | 被引量 : 0次 | 上传用户:haobs
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了衡量区域受到不同攻击的整体影响,捕捉区域网络拓扑之间的抗毁性差异,提出一种区域抗毁性评估算法。从区域内部和区域外部出发,分析区域内部自身抗毁性和区域之间通信拓扑的抗毁性。多方获取测量数据并校验以构建拓扑关系图,实现区域间链接的预测作为拓扑数据的补充。基于分层概率采样,多次模拟破坏以逼近真实情况下区域的受破坏情况。实现显著性检验器,分别从整体水平和特殊薄弱点衡量区域受破坏的影响,发现区域之间受破坏情况的差异,计算区域抗毁性排名。最终给出48个区域的排名和聚类结果。
其他文献
针对基于学习的安卓应用程序的漏洞检测模型对源程序的特征提取结果欠缺语义信息,且提取的特征化结果包含与漏洞信息无关的噪声数据,导致漏洞检测模型的准确率下降的问题,提出了一种基于代码切片(CIS)的程序特征提取方法。该方法和抽象语法树(AST)特征方法相比可以更加精确地提取和漏洞存在直接关系的变量信息,避免引入过多噪声数据,同时可以体现漏洞的语义信息。利用CIS,基于Bi-LSTM和注意力机制提出了一
针对边缘计算的数据隐私性、计算结果正确性和数据处理过程可审计性等需求,提出了一种基于区块链和联邦学习的边缘计算隐私保护方法,不需要可信环境和特殊硬件设施即可在网络边缘处联合多设备实现安全可靠的协同训练。利用区块链赋予边缘计算防篡改和抗单点故障攻击等特性,并在共识协议中融入梯度验证和激励机制,鼓励更多的本地设备诚实地向联邦学习贡献算力和数据。对于联邦学习共享模型参数导致的潜在隐私泄露问题,设计自适应