论文部分内容阅读
摘要:在城市隧道施工中经常用到浅埋暗挖法,其具有施工便利、灵活、经济效益好的特点。然而在地铁施工中应用浅埋暗挖法容易引起地表的沉降。而城市地铁车站往往位于人口和建筑物密集的区域,一旦发生地表沉降容易造成严重的后果。本文对地铁车站浅埋暗挖法施工引起地表沉降规律进行了研究,希望能够为判断地铁车站施工的最大地表沉降提供参考。
关键词:地铁车站;浅埋暗挖法;地表沉降
为了对地铁车站使用浅埋暗挖法进行施工而造成的地表沉降进行合理的控制,避免施工造成的地表沉降给地铁车站周围的建筑物和行人造成不利的影响,本文结合工程实例,对砂性土和黏性土互层的地质条件下的由浅埋暗挖法施工而造成的地表沉降规律进行了研究,施工方法会对地表沉降值造成直接的影响。
1.工程实例和研究现状
在地铁车站的施工过程中,周围的地层受到了施工的扰动,从而造成地表沉降槽,并影响周边的建筑物,甚至使其不能正常使用。地表沉降预测是地铁施工前期一项重要的施工环境影响评估工作。本文以某市的地铁5号线、10号线的11个地铁车站工程施工实例为例,该市使用了浅埋暗挖法进行施工,当地的地质条件为砂性土和黏性土互层。
当前国内外对于地铁车站中使用浅埋暗挖法进行施工而造成的地表沉降还没有进行系统的研究,F. Martos曾经以扁平矿洞开采导致的地表沉降统计结果为根据将沉降槽符合高斯分布首次提了出来。而 R. B. Peck以及B. Schmidt等学者又对隧道开挖导致的横向地表沉降槽与高斯分布同样符合进行了证明[1]。也就是
Smaxexp[-y2/(2i2)]=S
在公式中隧道中线与地表点之间的水平距离用y来表示;距离隧道中线处的地表沉降用S来表示;最大地表沉降用Smax来表示;到地表沉降槽反弯点距离用i来表示,其对沉降槽的形状与范围进行了定义。
通过该公式进行积分能够将沉降槽在隧道掘进方向上单位距离的的体积得出来,也就是
所谓的地层损失率在这里指的是在隧道开挖体积中单位距离内沉降槽体积所占的百分比:
V1=4VS/πD2
其中:地层损失率(%)用V1来表示;隧道等效直径用D 来表示。
现在在国内外很多对i这个沉降槽曲线反弯点距离进行了大量的研究,R. B. Peck提出隧道埋深和跨度这两者与i 具有十分密切的关系。同时,非常多的学者也将与之相类似的规律发现了出来;比如B.M.New以及M. P.O′Reilly 这两位学者认为与i 有关的只有隧道埋深,而与开挖方法和隧道直径之间并不具备太大的关系。也就是:
i = K zt
在这个公示中:隧道轴线埋深(m)用zt来表示;沉降槽宽度参数用K来表示,这些都与施工方法以及地层条件具有密切关系。
B.M.New以及M. P.O′Reilly 这两位学者提出:黏性土选择0.5作为K值,砂性土选择 0.25作为K值。B.M.New,M.P.O′Reilly 以及W. J. Rankin充分的利用了很多现场数据对上述公式的合理性进行了证明。而B. M.New,M.P.O′Reilly以及K.Fujita认为,需要在0.4—0.6的范围内对黏性土 K 值的变化进行控制。W.Yoshikoshi以及R. B. Peck等提出砂性土具有0.25—0.45的 K 值分布范围。
我国有学者通过对延安东路隧道沉降分布规律的总结,提出了“欠地层损失”这个概念提出了出来,并提出了相应的纵向地表沉降修正公式。还有学者通过离心试验和有限元模拟,研究了复杂条件下的地铁施工会造成的地表沉降[2]。
2.对地铁车站施工的实际调查结果
本文对某市的地铁5号线、10号线的11个地铁车站工程的施工进行了调查研究,该车站主要使用暗挖法和明挖法两种施工方法,主要是对暗挖法对地表沉降对影响进行分析。
在地铁车站浅埋暗挖法施工中,施工水平、埋置深度、施工方法、地层条件都会影响到地表沉降的特征。根据调查显示,使用中洞法和洞桩法进行施工,覆土厚度的范围不超过1倍洞径,具体为5至11米,为浅埋大断面隧道。地层主要有卵石砂砾、黏性土、粉质黏土、粉土、中粗砂和粉细砂[3]。
在将其中数据不全、遮拦以及测点损坏的测线去除掉之后,从11个地铁车站的有效测线的分析结果来看,地表最大沉降的均值变化在-105至-130米之间。地表沉降值在60毫米之内的地车车站的比例约为70%。造成沉降超过100毫米的原因在于出现了地层空洞和地下水囊等比较复杂的地质条件。
3.地层损失率以及地表沉降槽宽度参数
开挖对地表影响的范围能够在地表沉降槽反弯点距离中很好的反映出来,而开挖扰动地层的程度则能够在地层损失率反映出来。因此这两个参数基本上能够将横向地表沉降
槽的规律确定下来。为了能够有效的进行分析和容积,可以采用等效为圆形隧道的方式对不同形状的隧道进行处理,同时用等效轴线埋深对圆心水平处的埋深进行定义。因为本次调查的车站在都具有相差不大的等效直径,因此无法对其地表沉降槽反弯点的影响进行考虑,二而且在分布范围上等效轴线也表现出比较集中的特点,如果选择i=azt+b这个公式对其进行拟合,就会由于较少的统计样本而导致偏差过大的情况。通过高斯分布曲线对其实施拟合,能够使程序的精度要求得到充分的满足,并且可以在允许的范围内对拟合误差进行控制,因此说明隧道开挖引起的横向地表沉降槽曲线与高斯分布相符合[4]。
在具有相同的隧道埋深的情况下,相对于洞法而言,由于洞桩法施工导致的地表沉降槽比较宽,主要是由于扣拱施工以及导洞开挖阶段施工这两个阶段的施工是导致地表沉降的最为主要的原因,而由于后续施工导致的地表沉降则并不是很明显。位于地铁车站主体的两侧的导洞在开挖的过程中都导致出现各自的沉降槽,最终使铁车站开挖对地表产生了较大的影响范围,中洞施工部分是其中中洞法施工引起的地表沉降主要发生点,其在主体结构的中部,具有相对较小的影响范围。
结语
在该地区砂粘土与粘性土互层的特定地质条件下,地铁车站施工会导致覆土厚度小于 1 倍洞径的地表沉降,其主要具有以下的几个特征:①施工方法与沉降槽宽度参数具有十分密切的关系,洞桩法施工车站大约具有 0.61—0.82的 K 值,中洞法具有 0.40—0.65的 K 值;②其中地表沉降值在60毫米之内的地车车站的比例约为70%。造成沉降超过100毫米的原因在于出现了地层空洞和地下水囊等比较复杂的地质条件。其分析的结果将科学的依据提供给了地表沉降控制标准的制定工作;③不同的施工方法会导致不同的地层损失率,比如洞桩法会导致产生0.49%—1.03%的地层损失率,洞桩法会导致产生 0.39%—1.41%的地层损失率。在地铁车站浅埋暗挖法施工中,施工水平、埋置深度、施工方法、地层条件都会影响到地表沉降的特征,可以对地表最大沉降值进行初步的预测,并且将相关依据提供给施工环境的预测。
参考文献:
[1]肖潇,张孟喜,吴惠明,张治国. 多线叠交盾构施工引起土体变形数值模拟分析 [J]. 地下空间与工程学报. 2011(05)
[2]王华伟. 超大直径盾构试掘进施工关键技术研究 [J]. 现代交通技术. 2011(03)
[3]李新志,李术才,李树忱. 浅埋大跨度隧道施工过程地表沉降变形特征研究 [J]. 岩石力学与工程学报. 2011(S1)
[4]李健,谭忠盛,喻渝,倪鲁肃. 浅埋下穿高速公路黄土隧道管棚变形监测及受力机制分析 [J]. 岩石力学与工程学报. 2011(S1)
关键词:地铁车站;浅埋暗挖法;地表沉降
为了对地铁车站使用浅埋暗挖法进行施工而造成的地表沉降进行合理的控制,避免施工造成的地表沉降给地铁车站周围的建筑物和行人造成不利的影响,本文结合工程实例,对砂性土和黏性土互层的地质条件下的由浅埋暗挖法施工而造成的地表沉降规律进行了研究,施工方法会对地表沉降值造成直接的影响。
1.工程实例和研究现状
在地铁车站的施工过程中,周围的地层受到了施工的扰动,从而造成地表沉降槽,并影响周边的建筑物,甚至使其不能正常使用。地表沉降预测是地铁施工前期一项重要的施工环境影响评估工作。本文以某市的地铁5号线、10号线的11个地铁车站工程施工实例为例,该市使用了浅埋暗挖法进行施工,当地的地质条件为砂性土和黏性土互层。
当前国内外对于地铁车站中使用浅埋暗挖法进行施工而造成的地表沉降还没有进行系统的研究,F. Martos曾经以扁平矿洞开采导致的地表沉降统计结果为根据将沉降槽符合高斯分布首次提了出来。而 R. B. Peck以及B. Schmidt等学者又对隧道开挖导致的横向地表沉降槽与高斯分布同样符合进行了证明[1]。也就是
Smaxexp[-y2/(2i2)]=S
在公式中隧道中线与地表点之间的水平距离用y来表示;距离隧道中线处的地表沉降用S来表示;最大地表沉降用Smax来表示;到地表沉降槽反弯点距离用i来表示,其对沉降槽的形状与范围进行了定义。
通过该公式进行积分能够将沉降槽在隧道掘进方向上单位距离的的体积得出来,也就是
所谓的地层损失率在这里指的是在隧道开挖体积中单位距离内沉降槽体积所占的百分比:
V1=4VS/πD2
其中:地层损失率(%)用V1来表示;隧道等效直径用D 来表示。
现在在国内外很多对i这个沉降槽曲线反弯点距离进行了大量的研究,R. B. Peck提出隧道埋深和跨度这两者与i 具有十分密切的关系。同时,非常多的学者也将与之相类似的规律发现了出来;比如B.M.New以及M. P.O′Reilly 这两位学者认为与i 有关的只有隧道埋深,而与开挖方法和隧道直径之间并不具备太大的关系。也就是:
i = K zt
在这个公示中:隧道轴线埋深(m)用zt来表示;沉降槽宽度参数用K来表示,这些都与施工方法以及地层条件具有密切关系。
B.M.New以及M. P.O′Reilly 这两位学者提出:黏性土选择0.5作为K值,砂性土选择 0.25作为K值。B.M.New,M.P.O′Reilly 以及W. J. Rankin充分的利用了很多现场数据对上述公式的合理性进行了证明。而B. M.New,M.P.O′Reilly以及K.Fujita认为,需要在0.4—0.6的范围内对黏性土 K 值的变化进行控制。W.Yoshikoshi以及R. B. Peck等提出砂性土具有0.25—0.45的 K 值分布范围。
我国有学者通过对延安东路隧道沉降分布规律的总结,提出了“欠地层损失”这个概念提出了出来,并提出了相应的纵向地表沉降修正公式。还有学者通过离心试验和有限元模拟,研究了复杂条件下的地铁施工会造成的地表沉降[2]。
2.对地铁车站施工的实际调查结果
本文对某市的地铁5号线、10号线的11个地铁车站工程的施工进行了调查研究,该车站主要使用暗挖法和明挖法两种施工方法,主要是对暗挖法对地表沉降对影响进行分析。
在地铁车站浅埋暗挖法施工中,施工水平、埋置深度、施工方法、地层条件都会影响到地表沉降的特征。根据调查显示,使用中洞法和洞桩法进行施工,覆土厚度的范围不超过1倍洞径,具体为5至11米,为浅埋大断面隧道。地层主要有卵石砂砾、黏性土、粉质黏土、粉土、中粗砂和粉细砂[3]。
在将其中数据不全、遮拦以及测点损坏的测线去除掉之后,从11个地铁车站的有效测线的分析结果来看,地表最大沉降的均值变化在-105至-130米之间。地表沉降值在60毫米之内的地车车站的比例约为70%。造成沉降超过100毫米的原因在于出现了地层空洞和地下水囊等比较复杂的地质条件。
3.地层损失率以及地表沉降槽宽度参数
开挖对地表影响的范围能够在地表沉降槽反弯点距离中很好的反映出来,而开挖扰动地层的程度则能够在地层损失率反映出来。因此这两个参数基本上能够将横向地表沉降
槽的规律确定下来。为了能够有效的进行分析和容积,可以采用等效为圆形隧道的方式对不同形状的隧道进行处理,同时用等效轴线埋深对圆心水平处的埋深进行定义。因为本次调查的车站在都具有相差不大的等效直径,因此无法对其地表沉降槽反弯点的影响进行考虑,二而且在分布范围上等效轴线也表现出比较集中的特点,如果选择i=azt+b这个公式对其进行拟合,就会由于较少的统计样本而导致偏差过大的情况。通过高斯分布曲线对其实施拟合,能够使程序的精度要求得到充分的满足,并且可以在允许的范围内对拟合误差进行控制,因此说明隧道开挖引起的横向地表沉降槽曲线与高斯分布相符合[4]。
在具有相同的隧道埋深的情况下,相对于洞法而言,由于洞桩法施工导致的地表沉降槽比较宽,主要是由于扣拱施工以及导洞开挖阶段施工这两个阶段的施工是导致地表沉降的最为主要的原因,而由于后续施工导致的地表沉降则并不是很明显。位于地铁车站主体的两侧的导洞在开挖的过程中都导致出现各自的沉降槽,最终使铁车站开挖对地表产生了较大的影响范围,中洞施工部分是其中中洞法施工引起的地表沉降主要发生点,其在主体结构的中部,具有相对较小的影响范围。
结语
在该地区砂粘土与粘性土互层的特定地质条件下,地铁车站施工会导致覆土厚度小于 1 倍洞径的地表沉降,其主要具有以下的几个特征:①施工方法与沉降槽宽度参数具有十分密切的关系,洞桩法施工车站大约具有 0.61—0.82的 K 值,中洞法具有 0.40—0.65的 K 值;②其中地表沉降值在60毫米之内的地车车站的比例约为70%。造成沉降超过100毫米的原因在于出现了地层空洞和地下水囊等比较复杂的地质条件。其分析的结果将科学的依据提供给了地表沉降控制标准的制定工作;③不同的施工方法会导致不同的地层损失率,比如洞桩法会导致产生0.49%—1.03%的地层损失率,洞桩法会导致产生 0.39%—1.41%的地层损失率。在地铁车站浅埋暗挖法施工中,施工水平、埋置深度、施工方法、地层条件都会影响到地表沉降的特征,可以对地表最大沉降值进行初步的预测,并且将相关依据提供给施工环境的预测。
参考文献:
[1]肖潇,张孟喜,吴惠明,张治国. 多线叠交盾构施工引起土体变形数值模拟分析 [J]. 地下空间与工程学报. 2011(05)
[2]王华伟. 超大直径盾构试掘进施工关键技术研究 [J]. 现代交通技术. 2011(03)
[3]李新志,李术才,李树忱. 浅埋大跨度隧道施工过程地表沉降变形特征研究 [J]. 岩石力学与工程学报. 2011(S1)
[4]李健,谭忠盛,喻渝,倪鲁肃. 浅埋下穿高速公路黄土隧道管棚变形监测及受力机制分析 [J]. 岩石力学与工程学报. 2011(S1)