论文部分内容阅读
针对网络拥塞控制中不能准确预测自相似业务量的问题,提出了一种噪声在线估计卡尔曼滤波(NOEKF)算法.NOEKF算法不依赖于业务源反馈信息,通过观测节点处当前和过去时刻的业务量来预测下一时刻的业务量,并建立了业务量的卡尔曼滤波状态方程和观测方程,给出了递推形式的状态向量最佳估计形式.考虑到未知状态方程和观测方程噪声的统计特性,采用在线估值法,并引入遗忘因子对噪声的统计特性进行估计.NOEKF算法预测准确、偏差小.仿真结果表明,与经典卡尔曼滤波算法和时间序列预测方法比较,NOEKF算法能够更精确地预测自相似