论文部分内容阅读
【摘 要】 论文从药物合成废水处理的重要性出发,系统阐述了高级氧化处理技术及研究进展,接着研究了药物合成废水处理工程。
【关键词】 药物合成;废水处理;工程
一、前言
药物合成废水处理技术是保证水质的重要前提,药物合成废水处理技术不仅可以保证水源的的可持续性,而且关系到国家和人民群众的根本利用。
二、药物合成废水处理的重要性
水资源危机及水污染问题早已引起各国的高度重视。在我国,强调节约用水,减少废水排放量,治理污水已列入城建重点。水环境问题主要是有机废水的污染问题。因此,有机废水的治理是环保工作的重点。山东鲁西兽药股份有限公司是省内同行业首家民营股份制企业、高新技术企业。公司占地面积70,000m2,建筑面积28,000m2,净资产6,000万元。拥有员工218人,专业技术人员占50%以上。公司设备先进,技术力量雄厚,检测仪器齐全,对生产的各种原料及制剂都能够独立检测。产品在畅销国内市场的同时,还销往四十多个国家和地区。目前,公司主要生產地克珠利、环丙氨嗪、癸氧喹酯、二嗪农、牛至油、大蒜素、双乙酸钠、氯氰碘柳胺钠、二甲酸钾、诺霉脱等原料及各种制剂近百种,深受广大用户的信赖与欢迎。尤其是在原料药的生产过程中,会有一部分的废水需要处理。目前本公司采用的都是按照国家政策,送到有资质的单位进行处理。作者本人也一直关注国内外废水处理的进展并作为技术课题进行了研究。
三、高级氧化处理技术及研究进展
1、Fenton试剂法
Fenton法是以铁盐(Fe3+或Fe2+)为催化剂,在H2O2存在的情况下会产生强氧化性的·OH,它能氧化许多有机分子物质,且反应过程不需要高温高压。Fenton法反应条件温和,设备也较为简单,适用范围比较广泛。该法的缺点是氧化能力相对较弱,出水含有大量的铁离子。
2、湿式氧化法
湿式氧化法(WAO)是在高温(125~320℃)、高压(0.5~10MPa)下用氧气或空气作为氧化剂,氧化水状态的有机物或还原态的无机物使之生成CO2和H2O的一种处理方法。如使用高效、稳定催化剂的催化湿式氧化技术(CWAO)以及使用过氧化氢作氧化剂的催化湿式过氧化物氧化技术(CW-PO)等。目前催化湿式氧化法的研究热点主要集中在高效、稳定的催化剂的制备上。
3、光催化氧化法
光催化氧化法是一种简单、高效很有前途的技术。它在一定的时间里可以讲几乎所有的的还原性物质氧化,具有能量利用率高、脱色效果好,不产生剩余污泥,无二次污染等优点。光催化氧化法是以n型半导体(如TiO2,SrO2,WO3,SnO2等)作为催化剂的催化氧化过程。当这些催化剂受到近紫外光辐射时,会形成电子空穴对(h+__e-)。由于空穴有很强的氧化能力,当这些电子和空穴迁移到粒子表面后,使水在半导体表面形成氧化能力极强的羟基自由基,利用·OH便可氧化各种有机物并使之完全矿化。
4、臭氧氧化法
臭氧被认为是一种有效的氧化剂和消毒剂,具有很强的氧化能力,采用臭氧氧化技术处理有机废水,具有反应速度快、无二次污染等优点。在臭氧的氧化反应过程中,臭氧的氧化分解反应是一种自由基反应,其中O3与OH经过一连串反应生成O2和自由基·OH,而·OH比O3的氧化能力更强,能氧化分解更多的有机物。
5、超声声化法
超声声化的原理是液体在超声波(15kHz~1MHz)辐射下产生空化气泡,这些空化气泡吸收声场能量,并在极短的时间内崩溃释能。在空化气泡崩溃的瞬间,会在其周围极小空间范围内产生高温高压(温度高达1900~2500k,压力超过50Mpa),并伴随有强冲击波和高速射流。进入空化泡中的水蒸气,在高温高压极端环境下发生离解,产生了强自由基如·OH,HOO·,·H等。水中的有机污染物就在超声产生的高温高压“空化泡”中分解,或者被自由基氧化。
6、微波诱导催化氧化法
微波是指波长为1mm~1m、频率为300~300000MHz的一种电磁波。在液体中微波能使液体中的极性分子高速旋转碰撞而产生热效应。许多磁性物质,如过渡金属及其化合物、活性炭等对微波有很强的吸收能力,常作为诱导化学反应的催化剂,当受到微波辐射时不均匀的表面会产生许多“热点”,其能量比其它部位高得多,诱导产生高能电子辐射、臭氧氧化、紫外光解和非平衡态等离子体等多种反应,可以产生高温并形成活性氧化物质,从而使有机物直接分解或将大分子有机物转变成小分子有机物。
7、超临界水氧化法
超临界水氧化法(SCWO)是目前研究比较活跃的废水处理技术之一。它是以水为介质,利用水在超临界状态下所具有的特殊溶解度、易改变的密度和介电常数、较低的黏度、较大的离子积、氢键几乎消失等特殊的性质,使它可与非极性物质以任意比例互溶,提高了反应速率,并可实现有机物的完全氧化。利用这种性质,将有机污染物与水混合,升温,加压到临界状态,通过改变反应的压力和温度等条件,汽液相界面消失,形成均相的氧化体系,有机污染物将被迅速氧化分解。但是由于该技术对反应条件要求较为苛刻(高温、高压)对设备要求较高,因此,还有一些实际的技术问题亟待解决。
8、电化学氧化法
电化学氧化法主要是通过电极材料的作用,产生超氧自由基(·O2)、羟基自由基(·OH)等来氧化水体中的有机物,但是传统电化学方法一直存在着能耗大、成本高、析氧和析氢等副反应的特点,于是在此基础上,便发展了三维电极和高压脉冲电凝技术。三维电极与原先的二维电极相比,面体比增大、离子间距离小、传质效果好;而高压脉冲电凝技术可以大大降低总电流强度和减少电解时间,从而提高电流效率,降低电耗、铁耗。
四、药物合成废水处理工程
1、制药废水的处理工艺及选择 制药废水的水质特点使得多数制药废水单独采用生化法处理根本无法达标,所以在生化处理前必须进行必要的预处理。一般应设调节池,调节水质水量和pH,且根据实际情况采用某种物化或化学法作为预处理工序,以降低水中的SS、盐度及部分COD,减少废水中的生物抑制性物质,并提高废水的可降解性,以利于废水的后续生化处理。
预处理后的废水,可根据其水质特征选取某种厌氧和好氧工艺进行处理,若出水要求较高,好氧处理工艺后还需继续进行后处理。具體工艺的选择应综合考虑废水的性质、工艺的处理效果、基建投资及运行维护等因素,做到技术可行,经济合理。总的工艺路线为预处理-厌氧-好氧-(后处理)组合工艺。如陈明辉等采用水解吸附—接触氧化—过滤组合工艺处理含人工胰岛素等的综合制药废水,处理后出水水质优于GB8978-1996的一级标准。气浮-水解-接触氧化工艺处理化学制药废水、复合微氧水解-复合好氧-砂滤工艺处理抗生素废水、气浮-UBF-CASS工艺处理高浓度中药提取废水等都取得了较好的处理效果。
2、制药废水中有用物质的回收利用
推进制药业清洁生产,提高原料的利用率以及中间产物和副产品的综合回收率,通过改革工艺使污染在生产过程中得到减少或消除。由于某些制药生产工艺的特殊性,其废水中含有大量可回收利用的物质,对这类制药废水的治理,应首先加强物料回收和综合利用。如浙江义乌华义制药有限公司针对其医药中间体废水中含量高达5%~10%的铵盐,采用固定刮板薄膜蒸发、浓缩、结晶、回收质量分数为30%左右的(NH4)2SO4、NH4NO3作肥料或回用,具有明显经济效益[32];某高科技制药企业用吹脱法处理甲醛含量极高的生产废水,甲醛气体经回收后可配成福尔马林试剂,亦可作为锅炉热源进行焚烧。通过回收甲醛使资源得到可持续利用,并且4~5年内可将该处理站的投资费用收回[33],实现了环境效益和经济效益的统一。但一般来说,制药废水成分复杂,不易回收,且回收流程复杂,成本较高。因此,先进高效的制药废水综合治理技术是彻底解决污水问题的关键。
五、结束语
从实践出发对当前药物合成废水处理技术的相关知识,进行了粗略的分析和研究。综上分析,废水处理工程的主要任务是运用科学的方法,促进废水处理工作的开展。
参考文献:
[1]郭会灿.制药工业废水的特点及处理技术[J].河北化工,2011
[2]刘琳.合成制药废水处理的设计与实践[J].工程设计与建设,2010
[3]李宇庆,马楫,钱国恩.制药废水处理技术进展[J].工业水处理,2011
[4]姚宝,丁成松,程俊,等.抗生素药生产废水处理工艺改进研究[J].中国环境管理干部学院学报,2011
【关键词】 药物合成;废水处理;工程
一、前言
药物合成废水处理技术是保证水质的重要前提,药物合成废水处理技术不仅可以保证水源的的可持续性,而且关系到国家和人民群众的根本利用。
二、药物合成废水处理的重要性
水资源危机及水污染问题早已引起各国的高度重视。在我国,强调节约用水,减少废水排放量,治理污水已列入城建重点。水环境问题主要是有机废水的污染问题。因此,有机废水的治理是环保工作的重点。山东鲁西兽药股份有限公司是省内同行业首家民营股份制企业、高新技术企业。公司占地面积70,000m2,建筑面积28,000m2,净资产6,000万元。拥有员工218人,专业技术人员占50%以上。公司设备先进,技术力量雄厚,检测仪器齐全,对生产的各种原料及制剂都能够独立检测。产品在畅销国内市场的同时,还销往四十多个国家和地区。目前,公司主要生產地克珠利、环丙氨嗪、癸氧喹酯、二嗪农、牛至油、大蒜素、双乙酸钠、氯氰碘柳胺钠、二甲酸钾、诺霉脱等原料及各种制剂近百种,深受广大用户的信赖与欢迎。尤其是在原料药的生产过程中,会有一部分的废水需要处理。目前本公司采用的都是按照国家政策,送到有资质的单位进行处理。作者本人也一直关注国内外废水处理的进展并作为技术课题进行了研究。
三、高级氧化处理技术及研究进展
1、Fenton试剂法
Fenton法是以铁盐(Fe3+或Fe2+)为催化剂,在H2O2存在的情况下会产生强氧化性的·OH,它能氧化许多有机分子物质,且反应过程不需要高温高压。Fenton法反应条件温和,设备也较为简单,适用范围比较广泛。该法的缺点是氧化能力相对较弱,出水含有大量的铁离子。
2、湿式氧化法
湿式氧化法(WAO)是在高温(125~320℃)、高压(0.5~10MPa)下用氧气或空气作为氧化剂,氧化水状态的有机物或还原态的无机物使之生成CO2和H2O的一种处理方法。如使用高效、稳定催化剂的催化湿式氧化技术(CWAO)以及使用过氧化氢作氧化剂的催化湿式过氧化物氧化技术(CW-PO)等。目前催化湿式氧化法的研究热点主要集中在高效、稳定的催化剂的制备上。
3、光催化氧化法
光催化氧化法是一种简单、高效很有前途的技术。它在一定的时间里可以讲几乎所有的的还原性物质氧化,具有能量利用率高、脱色效果好,不产生剩余污泥,无二次污染等优点。光催化氧化法是以n型半导体(如TiO2,SrO2,WO3,SnO2等)作为催化剂的催化氧化过程。当这些催化剂受到近紫外光辐射时,会形成电子空穴对(h+__e-)。由于空穴有很强的氧化能力,当这些电子和空穴迁移到粒子表面后,使水在半导体表面形成氧化能力极强的羟基自由基,利用·OH便可氧化各种有机物并使之完全矿化。
4、臭氧氧化法
臭氧被认为是一种有效的氧化剂和消毒剂,具有很强的氧化能力,采用臭氧氧化技术处理有机废水,具有反应速度快、无二次污染等优点。在臭氧的氧化反应过程中,臭氧的氧化分解反应是一种自由基反应,其中O3与OH经过一连串反应生成O2和自由基·OH,而·OH比O3的氧化能力更强,能氧化分解更多的有机物。
5、超声声化法
超声声化的原理是液体在超声波(15kHz~1MHz)辐射下产生空化气泡,这些空化气泡吸收声场能量,并在极短的时间内崩溃释能。在空化气泡崩溃的瞬间,会在其周围极小空间范围内产生高温高压(温度高达1900~2500k,压力超过50Mpa),并伴随有强冲击波和高速射流。进入空化泡中的水蒸气,在高温高压极端环境下发生离解,产生了强自由基如·OH,HOO·,·H等。水中的有机污染物就在超声产生的高温高压“空化泡”中分解,或者被自由基氧化。
6、微波诱导催化氧化法
微波是指波长为1mm~1m、频率为300~300000MHz的一种电磁波。在液体中微波能使液体中的极性分子高速旋转碰撞而产生热效应。许多磁性物质,如过渡金属及其化合物、活性炭等对微波有很强的吸收能力,常作为诱导化学反应的催化剂,当受到微波辐射时不均匀的表面会产生许多“热点”,其能量比其它部位高得多,诱导产生高能电子辐射、臭氧氧化、紫外光解和非平衡态等离子体等多种反应,可以产生高温并形成活性氧化物质,从而使有机物直接分解或将大分子有机物转变成小分子有机物。
7、超临界水氧化法
超临界水氧化法(SCWO)是目前研究比较活跃的废水处理技术之一。它是以水为介质,利用水在超临界状态下所具有的特殊溶解度、易改变的密度和介电常数、较低的黏度、较大的离子积、氢键几乎消失等特殊的性质,使它可与非极性物质以任意比例互溶,提高了反应速率,并可实现有机物的完全氧化。利用这种性质,将有机污染物与水混合,升温,加压到临界状态,通过改变反应的压力和温度等条件,汽液相界面消失,形成均相的氧化体系,有机污染物将被迅速氧化分解。但是由于该技术对反应条件要求较为苛刻(高温、高压)对设备要求较高,因此,还有一些实际的技术问题亟待解决。
8、电化学氧化法
电化学氧化法主要是通过电极材料的作用,产生超氧自由基(·O2)、羟基自由基(·OH)等来氧化水体中的有机物,但是传统电化学方法一直存在着能耗大、成本高、析氧和析氢等副反应的特点,于是在此基础上,便发展了三维电极和高压脉冲电凝技术。三维电极与原先的二维电极相比,面体比增大、离子间距离小、传质效果好;而高压脉冲电凝技术可以大大降低总电流强度和减少电解时间,从而提高电流效率,降低电耗、铁耗。
四、药物合成废水处理工程
1、制药废水的处理工艺及选择 制药废水的水质特点使得多数制药废水单独采用生化法处理根本无法达标,所以在生化处理前必须进行必要的预处理。一般应设调节池,调节水质水量和pH,且根据实际情况采用某种物化或化学法作为预处理工序,以降低水中的SS、盐度及部分COD,减少废水中的生物抑制性物质,并提高废水的可降解性,以利于废水的后续生化处理。
预处理后的废水,可根据其水质特征选取某种厌氧和好氧工艺进行处理,若出水要求较高,好氧处理工艺后还需继续进行后处理。具體工艺的选择应综合考虑废水的性质、工艺的处理效果、基建投资及运行维护等因素,做到技术可行,经济合理。总的工艺路线为预处理-厌氧-好氧-(后处理)组合工艺。如陈明辉等采用水解吸附—接触氧化—过滤组合工艺处理含人工胰岛素等的综合制药废水,处理后出水水质优于GB8978-1996的一级标准。气浮-水解-接触氧化工艺处理化学制药废水、复合微氧水解-复合好氧-砂滤工艺处理抗生素废水、气浮-UBF-CASS工艺处理高浓度中药提取废水等都取得了较好的处理效果。
2、制药废水中有用物质的回收利用
推进制药业清洁生产,提高原料的利用率以及中间产物和副产品的综合回收率,通过改革工艺使污染在生产过程中得到减少或消除。由于某些制药生产工艺的特殊性,其废水中含有大量可回收利用的物质,对这类制药废水的治理,应首先加强物料回收和综合利用。如浙江义乌华义制药有限公司针对其医药中间体废水中含量高达5%~10%的铵盐,采用固定刮板薄膜蒸发、浓缩、结晶、回收质量分数为30%左右的(NH4)2SO4、NH4NO3作肥料或回用,具有明显经济效益[32];某高科技制药企业用吹脱法处理甲醛含量极高的生产废水,甲醛气体经回收后可配成福尔马林试剂,亦可作为锅炉热源进行焚烧。通过回收甲醛使资源得到可持续利用,并且4~5年内可将该处理站的投资费用收回[33],实现了环境效益和经济效益的统一。但一般来说,制药废水成分复杂,不易回收,且回收流程复杂,成本较高。因此,先进高效的制药废水综合治理技术是彻底解决污水问题的关键。
五、结束语
从实践出发对当前药物合成废水处理技术的相关知识,进行了粗略的分析和研究。综上分析,废水处理工程的主要任务是运用科学的方法,促进废水处理工作的开展。
参考文献:
[1]郭会灿.制药工业废水的特点及处理技术[J].河北化工,2011
[2]刘琳.合成制药废水处理的设计与实践[J].工程设计与建设,2010
[3]李宇庆,马楫,钱国恩.制药废水处理技术进展[J].工业水处理,2011
[4]姚宝,丁成松,程俊,等.抗生素药生产废水处理工艺改进研究[J].中国环境管理干部学院学报,2011