论文部分内容阅读
针对基于图的多标签特征选择方法忽略图拉普拉斯矩阵的动态变化,且利用逻辑标签来指导特征选择过程而丢失标签信息等问题,提出了一种基于动态图拉普拉斯矩阵和实值标签的多标签特征选择方法。该方法利用特征矩阵的稳健低维空间构造动态图拉普拉斯矩阵,并利用该稳健低维空间作为实值标签空间,进一步使用流形约束和非负约束将逻辑标签转化为实值标签,以此来解决上述问题。所提方法与3种多标签特征选择方法在9个多标签基准数据集上进行了对比实验,实验结果表明,所提多标签特征选择方法可得到高质量的特征子集,并且能获得很好的分类表现。