论文部分内容阅读
利用Faster-RCNN卷积神经网络模型检测了自然环境中的油茶果图像。首先对3820副油茶果图像进行标注,然后通过VGG16网络提取油茶果的特征,送入RPN层进行分类和校准,最后对油茶果进行分类回归。对100幅含有696个油茶果的图像进行检测验证,检测结果表明:平均识别率为92.39%,准确率为98.92%,召回率为93.32%,F1值为96.04%;平均每幅图像的识别时间为0.21 s,能满足油茶果实时检测的要求。