论文部分内容阅读
A total of 408 inbred rice cultivars bred in the last decade were analyzed for 24 SSR markers. The results showed the genetic diversity of indica cultivars was higher than that of japonica cultivars, and the genetic diversity of new cultivars raised in recent years was lower. Among the six rice cropping regions (RCRs) in China, genetic diversity was the highest in the central rice region (RCR-II) and the southwest rice region (RCR-III). Genetic differences among subpopulations of japonica were more complex than those in indica. Differentiation among seasonal ecotypes and RCRs in indica populations was unclear, but differentiation between RCR-II and northeast rice region (RCR-V) was more distinct for japonica cultivars. Considering the North rice region (RCR-IV) has very low genetic diversity among the tested cultivars, it is important to broaden the genetic background for future cultivars in rice breeding programs.
A total of 408 inbred rice cultivars bred in the last decade were analyzed for 24 SSR markers. The results showed the genetic diversity of indica cultivars was higher than that of japonica cultivars, and the genetic diversity of new cultivars raised in recent years was lower. Among the six rice cropping regions (RCRs) in China, genetic diversity was the highest in the central rice region (RCR-II) and the southwest rice region (RCR-III). Genetic differences among subpopulations of japonica were more complex than those in indica. Differentiation among seasonal ecotypes and RCRs in indica populations was unclear, but differentiation between RCR-II and northeast rice region (RCR-V) was more distinct for japonica cultivars. Considering the North rice region (RCR-IV) has very low genetic diversity among the tested cultivars, it is important to broaden the genetic background for future cultivars in rice breeding programs.