论文部分内容阅读
针对数据存储规模的扩大,提出了一种基于融合主成分匹配FPCM(fusion principal components match)的异常检测方法。首先将各子节点数据通过聚类去除孤立点以提高主成分分析的稳定性,将各子节点的聚类中心传送到中心节点,减少节点间传送数据的通信量并且实现求主成分的数据融合;用聚类中心的主成分转换矩阵建立的正常行为模型能够体现整体的数据特征;最后使用决策树方法提高匹配速度。实验结果表明,FPCM方法能保持较高的DOS检测率,在保证整体检测率为97%的同时将误报率控制在10%以下。通过