论文部分内容阅读
针对传统AdaBoost算法在分类过程中时间复杂度和算法学习复杂度较高的问题,提出一种改进的算法AdaBoostFISP。以固定增量单样本感知器为弱分类器,在感知器的权值更新上采用固定增量代替变量增量,从而减少运算时间、降低学习复杂度。实验结果证明了该算法在预测准确性、学习复杂度和时间复杂度等方面的优势。