论文部分内容阅读
针对手部指节图像结构特征模糊与建模困难的问题,以Log Gaussian Cox随机场为图像建模基础,给出了随机图像上偏移特征的抽取与学习方法,实现了手部图像中指节的识别。在缺乏Cox过程图像模型先验假设的条件下,结合随机图像的水平集分解,得到了图像偏移表示的逼近结果。在图像灰度分布非参数密度核估计基础上,利用非线性各向异性滤波对偏移特征进行增强,建立了偏移测度特征的Bayesian估计。提出了不同偏移参数下偏移特征的模型学习与融合算法,获得了指节图像特征的融合表示,并在手部指节图像数据库中比较了不