论文部分内容阅读
针对蚁群算法搜索初期收敛速度慢和容易陷入局部最优的问题,对蚁群算法进行了改进。在初始化阶段,采用贪心策略构造次优路径并增加该路径上的信息素浓度,实现不同路径上信息素的初始分配,使信息素在搜索初期就能发挥指导性作用,让蚂蚁更快地趋向于最优解的附近;在迭代寻优过程中,引入遗传变异操作,对每次迭代后的最优路径进行变异操作,尝试寻找一条更优的路径,并用找到的更优路径自适应调整信息素增量;当算法不可避免地陷入局部最优时,运用信息素回滚策略,根据回滚次数动态调整发挥因子,加强搜索能力,使算法更容易跳出局部最优。仿真实验结果表明,改进算法能有效地加快收敛速度和增强跳出局部最优的能力。