论文部分内容阅读
提出了一种基于聚类和密度的KNN分类器训练样本约减方法。使用KNN分类器进行文本分类的时侯,由于训练样本在类别内分布的不均匀,会造成分类准确性的下降,而且相似度计算量非常大。新方法根据训练样本的密度采用聚类的方法,约减了一定数量的"噪声"样本。实验表明,使用该方法能同时提高KNN分类器的准确率和效率。