论文部分内容阅读
提出了一种将分块PCA与最大散度差鉴别分析相结合的人脸识别方法。该方法是先对原始的人脸图像进行分块,然后对分块得到的子图像矩阵采用PCA方法进行特征抽取,从而把原始模式从高维空间映射到较低维空间。接下来再对新模式采用最大散度差线性鉴别分析,这样就避免了对新模式的类内散布矩阵非奇异的要求。在ORL人脸库和Yale人脸库上分别检验了分块PCA与最大散度差鉴别分析相结合的人脸识别方法的识别性能,实验结果表明该方法抽取的鉴别特征有较强的鉴别能力。