论文部分内容阅读
针对多目标图像检测存在的误检问题,结合低层特征和中层提示,提出了一个新的基于显著对象的贝叶斯框架下的多目标检测方法。该方法首先用上下文感知显著检测方法获取图像的低层特征信息,然后用Ncut图像分割取得图像的显著中层信息提示,即多目标的类别标签信息,根据低层和中层信息提示来计算先验显著图,最后使用贝叶斯方法计算获得图像的后验显著图。实验结果表明,该方法提高了显著对象检测精度,并且可以较好地解决多目标检测误检问题。