论文部分内容阅读
为实现高速铁路周界侵限检测系统自动识别轨道区域的功能,提出了一种自适应的图像分割与识别算法。计算了每个场景的直线特征极大值以调节自适应参数,提出了新的基于边界点权重及区域面积的聚类组合规则,将碎片化区域快速组合成局部区域;简化了卷积神经网络,通过对卷积核进行预训练并在损失函数中增加稀疏项来提高特征图的差异性。在不使用显卡的前提下,对比实验结果表明所提算法的像素准确率最高(95.9%),计算时间最短(2.5 s),网络参数约为0.18×10~6个,在分割精准度、识别准确率、计算时间、人工操作复杂度和系