论文部分内容阅读
共中心点道集(CMP)一般提供了振幅随偏移距(AVO)变化而变化的信息,即通过对称反褶积子波的峰值振幅来显示反射系数。这个振幅变化给出了每个偏移距h的反射系数R,即给出了一个函数R(h)。但是我们怎样把入射角φ与偏移距h联系在一起,从而得到反射系数函数R(φ)呢?这就需要进行振幅随入射角(AVA)的关系分析。本文的目的是在与速度无关的倾角动校正(DMO)之后,通过偏移径向剖面以及叠前零偏移距偏移,导出振幅与入射角之间的关系式。过去对保持振幅DMO有关的研究,仅涉及到常偏移距DMO,而且没有给出处理之后偏移距和入射角之间的联系。本文结果说明,能从已成像的数据体中提取相同的反射系数函数,不管这个数据体是使用径向道DMO加零偏移距偏移得出的,还是使用常偏移距DMO加零偏移距偏移得出的,或是直接使用叠前共偏移距偏移得出的。 对这种研究来说,数据采集观测系统包括平行的、规则空间的多次覆盖测线,并且传播速度为常速。数据中的反射同相轴是随机产生于有任意反射函数的、任意方向的3D平面反射层。DMO运算通过使用Stolt偏移法,对数据的每个径向平面剖面,即2h=Ut,用常速U/2进行偏移,从而把每一条线的数据(m,h,t),即炮检中点、半偏移距和时间转换成数据空间(m_1,k,t_1)。台并所有线的数据空间(m_1,k,t_1).将?
The Common Center Dot Gathering (CMP) generally provides information that the amplitude changes with offset (AVO), that is, the reflection coefficient is displayed by the peak amplitude of a symmetric deconvolution wavelet. This amplitude change gives the reflection coefficient R for each offset h, which gives a function R (h). However, how do we associate the angle of incidence φ with the offset h to obtain the reflection coefficient function R (φ)? This requires an analysis of the amplitude versus angle of incidence (AVA). The purpose of this paper is to derive the relationship between amplitude and angle of incidence by offsetting the radial profile and the pre-stack zero offset offset after velocity independent correction (DMO). In the past, the study on maintaining amplitude DMO involved only DMO with constant offset and did not give the correlation between offset and angle of incidence after processing. The results of this paper demonstrate that the same reflection coefficient function can be extracted from the imaged volume, regardless of whether the volume is derived using radial DMO plus zero offset, or normal offset DMO plus zero offset Offset offset derived, or directly using the pre-stack offset offset derived. For this type of research, the data acquisition observing system includes multiple, overlapping coverage lines in a parallel, regular space and at a constant rate of propagation. The reflection events in the data are randomly generated in any direction of the 3D plane reflection layer with an arbitrary reflection function. The DMO operation shifts the data (m, h, t) for each line, that is, the data (m, h, t) for each line by using the Stolt shift method for each radial plane section of the data, that is, 2h = Ut, Artillery midpoint, half offset and time are converted into data space (m_1, k, t_1). Taiwan and all the lines of data space (m_1, k, t_1).