论文部分内容阅读
肺癌是目前最常见的恶性肿瘤,也是已知的确诊后存活率最低的癌症之一。建立大规模的肺癌图像数据库是进行肺癌计算机辅助诊断(CAD)研究,开展肺癌诊断教育和训练以减轻医生负担,以及提高医疗诊断效率的基础。本文针对当前的肺癌图像数据库联盟(LIDC)在使用中存在的数据存取困难、缺乏对数据可视化和数据检索的支持等问题,提出了一个集数据模型、可视化和数据检索工具为一体的肺癌数据库平台。本文从分析LIDC的数据格式入手,引入数据库技术设计完成了肺癌数据库,以对获取的大量的肺癌图像数据进行管理和使用;针对数据可视化和检索的需要,设计了用于图像及其标注可视化的浏览器和数据查询器。研究结果表明该平台能很好地完成肺癌数据的存储、整合、可视化和检索,促进了肺癌诊断的研究。
Lung cancer is by far the most common malignancy and one of the known cancers with the lowest survival rate after diagnosis. The establishment of a large-scale lung cancer image database is the basis for computer-aided diagnosis (CAD) of lung cancer, diagnosis and training of lung cancer education to reduce the burden on doctors, and to improve the efficiency of medical diagnosis. In this paper, aiming at the problems such as data access difficulty and lack of support for data visualization and data retrieval in the current LIDC, a lung cancer database integrating data model, visualization and data retrieval tools is proposed platform. Based on the analysis of the data format of LIDC, this paper introduces the database technology to design and complete the lung cancer database to manage and use the acquired large amount of lung cancer image data. In view of the need of data visualization and retrieval, Browser and data finder. The results show that the platform can well store, integrate, visualize and retrieve lung cancer data and promote the research of lung cancer diagnosis.