论文部分内容阅读
为了改善单一聚类算法的聚类性能,提出一种基于量子遗传算法的XML文档聚类集成解决方法。该方法首先利用KNN分类算法将XML文档划分成k个差异性的聚类成员;其次根据聚类成员的关系获得内联相似度矩阵,并通过多次分割、向下、向上、双向收缩的QR算法分解特征值对应的特征向量来实现矩阵的维数缩减;然后在映射空间上用量子遗传算法实现聚类集成,把每一个样本判别到最优的聚类类别中。这样减少了数据差异性对聚类结果的影响,提高了聚类质量。实验结果表明,在真实的数据集上,该聚类集成算法比其他聚类集成算法具有更好的效果。