论文部分内容阅读
针对模糊C均值聚类算法易于陷入局部极值的问题,设计了一种基于混沌振荡粒子群优化的模糊C均值聚类方法。该方法在标准PSO算法中设计了一个振荡环节并引入混沌理论以增加算法的多样性和收敛性,接着把优化后的PSO算法和模糊C均值聚类算法相结合。文本聚类的仿真实验表明,相对于PSO-FCM算法和FCM算法,CCPSO-FCM算法具有良好的全局搜索能力和收敛速度,聚类效果良好。