二次固溶处理对IN718合金组织性能的影响

来源 :金属热处理 | 被引量 : 0次 | 上传用户:zemao1988
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
对IN718合金进行二次固溶处理,研究了二次固溶处理对其组织及高温拉伸性能的影响。结果表明,经二次固溶处理后,IN718合金组织中δ相含量较一次固溶增加,高温屈服强度降低。随二次固溶温度升高,δ相析出减少,高温屈服强度升高.
其他文献
使用激光熔覆技术在Q235钢基体上制备AlxNbMn2FeMoTi0.5高熵合金涂层,期望借此提高干切削技术适用刀具表层的硬度和耐磨性.经过初步筛选之后,主要研究了AlxNbMn2FeMoTi0.5(x=
通过真空悬浮熔炼炉熔炼制备了Cr Co Ni中熵合金,采用900℃热轧(变形量50%)、500℃温轧(变形量50%)获得轧制板材,利用光学显微镜、X射线衍射仪、扫描电镜、硬度计和万能试验机,研究轧制变形对合金组织结构和力学性能的影响。结果表明:Cr Co Ni中熵合金铸态时为简单的单相FCC固溶体结构,随着轧制变形的进行,无新相产生;Cr Co Ni合金有较好的塑性变形能力,塑性变形后其力学性能得到大幅度的提升,热轧后,其抗拉强度能达到890 MPa,伸长率能达到60%,并且通过加大变形量以及热轧+温轧的
利用一种钛合金表面防护涂料对近β钛合金Ti-1023进行表面包覆后,在不同温度和气氛环境下进行高温渗氧强化处理。对渗氧处理后的合金表层显微组织和硬度梯度进行表征。结果表明,涂层包覆可以有效减缓Ti-1023合金的高温氧化行为,抑制表面疏松的脆性氧化物的形成,提高合金表面硬度。在空气气氛下,经850℃×24 h渗氧处理后Ti-1023合金表层显微硬度由321 HV0.2提高到544 HV0.2,硬化深度达500μm以上。在Tβ以下750℃氧气气氛中渗氧48 h后,合金表层显微硬度可达459 HV0.2,并且
分析测试了GH3230合金氩弧焊接后经不同焊后热处理制度处理后的显微组织、显微硬度和拉伸性能。试验结果表明:GH3230合金焊接板材经1140~1180℃保温10 min焊后热处理,既能使焊后残余应力得到充分释放,又能保证组织稳定,满足合金力学性能要求.
针对屈服强度355 MPa级厚规格热轧H型钢进行了正火处理;利用光学显微镜,扫描电镜分别对轧制态和890、920℃正火处理试验钢的显微组织进行观察;对比分析了试验钢不同状态下冲
通过OM、SEM、TEM和维氏硬度计等手段研究了不同等温冷却时间对Ti-V-Mo复合微合金钢组织转变、析出行为及硬度的影响,探讨了影响硬度变化的因素。结果表明,Ti-V-Mo复合微合金钢奥氏体化后在630 ℃等温冷却0~3 h,随着等温时间的延长,基体中的铁素体比例不断增加而马氏体和贝氏体比例逐渐降低,硬度呈现先升高再趋于平稳,再升高至其最大值,最后略有下降。60~1200 s时,硬度出现平台是因为纳米级(Ti,V,Mo)C粒子的沉淀强化效果能够弥补相变导致基体软化造成的硬度损失;3600 s时,硬度达到
采用低C低Si、Ni+Cr+Mo+Cu复合强化的理念设计了100 mm厚的S420高强钢,对钢板焊接前后的微观组织、力学性能和裂纹尖端张开位移CTOD进行了观察和测试。试验结果表明:经过900℃淬火+580℃回火后,钢板的综合性能达到最佳,屈服强度为478 MPa,抗拉强度为581 MPa,伸长率为28.4%;钢板焊后-40℃冲击性能优异,从焊缝至熔合线+5 mm处的过渡区内,心部冲击吸收能量稳定在100 J以上。CTOD性能检验结果显示,即使在性能最薄弱区域粗晶热影响区(CGHAZ),裂纹尖端张开位移(
利用DIL-805AD/T动态膨胀相变仪对S34MnV钢在不同加热温度和保温时间下进行奥氏体化试验,通过晶界腐蚀、光学显微镜观察和截点法测定了奥氏体平均晶粒尺寸,并对S34MnV钢奥氏体晶粒长大规律进行了深入分析。通过对比Beck模型、Hillert模型和Sellars模型,根据实测晶粒尺寸数据拟合并优化了模型参数,建立了S34MnV钢奥氏体晶粒长大的动力学模型。结果表明:兼顾加热温度和保温时间两方面影响因素的Sellars模型的计算结果与实测数据吻合较好,可用于预测S34MnV钢在880~920℃加热温
利用JMatPro 7.0软件模拟预测Q1100高强钢的平衡相组成、钢的连续加热奥氏体化(TTA)曲线和钢的过冷奥氏体连续冷却转变(CCT)曲线、淬透性以及热物理性能参数.计算结果表明:Q1
结合国内外对高铬耐热钢的最新研究成果,从强化机制出发,总结分析了高铬耐热钢在蠕变过程中微观组织的演化行为。长时蠕变过程中由于M23C6碳化物和Laves相的粗化,高铬耐热钢性能下降,通过调整元素含量及改进热处理工艺可提高高温组织的稳定性。Z相的形成与MX相的消耗密切相关,目前对于Z相的成核机理尚不能达成一致,因此生成足够量的MX碳氮化物并保持高温长时作用下组织的稳定性是提高高铬耐热钢高温性能的有效途径。