论文部分内容阅读
针对青霉素发酵过程中菌体浓度、基质浓度、产物浓度等关键参量难以直接测量的难题,将逆系统方法与动态递归模糊神经网络(DRFNN)相结合,提出一种基于动态递归模糊神经逆的青霉素发酵软测量方法。在证明了系统可逆的条件下,得到系统的逆模型;再应用DRFNN网络所具有的自学习,自适应能力以及对任意非线性的逼近能力,对该模型进行了辨识,并将辨识好的逆模型串联在发酵系统之后,能够实现发酵系统的"线性化"。仿真结果表明,该方法能够对青霉素发酵过程中不可在线测量的关键变量实现了预估,且达到了较高的测量精度。