论文部分内容阅读
针对未知环境中,机器人同步定位与地图构建(SLAM)时,系统的统计特性发生突变问题,提出了一种基于非线性交互式多模型(IMM)的SLAM算法。该算法的主要思想是:用多个非线性高斯模型近似非线性非高斯模型;每个模型都采用扩展卡尔曼滤波(EKF)对非线性系统线性化;在每一步采用IMM方法获得融合估计值;从而演化机器人的SLAM.Monte Carlo仿真结果表明,在过程噪声均方根误差、量测噪声均方根误差和两者噪声均方根误差都发生变化的情况下,与EKF-SLAM算法和快速SLAM算法相比,该算法具有更好的估计精