论文部分内容阅读
针对传统多变量统计过程控制(MSPC)方法在故障检测、故障原因分析和故障识别中的难点,提出了多元特征提取方法与基于支持向量机(SVM)的一类分类器设计、特征选择以及多类分类器设计方法相结合的一种完整的MSPC新方法.该方法在故障检测中可去除特征满足特定分布的假设前提。并可确定多个统计量的控制限;在故障原因分析中综合考虑故障对于各个变量大小的影响以及变量变化对于故障分类的重要性,提高了关键变量选择的准确性;并且故障识别是基于SVM对故障特征分类的优良特性,避免了传统判别法中经验准则的引入.上述方法在标准仿真