论文部分内容阅读
基于轮胎/路面噪声产生机理,对轮胎下落法进行了改进,提出了轮胎路面噪声测试的新方法——室内加速下落法。在此基础上,测试了轮胎冲击不同刻槽参数组合、光面及多孔混凝土试板时的声压水平和声压频谱特征。结果表明:多孔混凝土路面噪声水平比横向和纵向刻槽混凝土噪声水平低10dB(A)和3dB(A);相同刻槽参数的纵向刻槽比横向刻槽水泥混凝土路面噪声低0.2~9.1dB(A);光面混凝土路面噪声水平高出纵向刻槽水泥混凝土路面约3dB(A)。混凝土路面的1/3倍程中心频率为连续谱,并且噪声主体部分在200~2 000Hz之间;最大声压级对应的频率一般在500~1 500Hz之间;纵向刻槽和多孔混凝土路面的频谱曲线没有出现噪声尖峰,而横向刻槽混凝土路面存在明显的噪声尖峰,光面混凝土路面的噪声尖峰出现的频率位置较横向刻槽混凝土路面大200Hz,其峰值也较横向刻槽混凝土路面小。
Based on the tire / road noise generation mechanism, the tire drop method was improved, and a new method for testing the tire road noise was put forward, that is, indoor accelerated drop method. On this basis, the sound pressure level and the sound pressure spectrum characteristics of tire with different notch combinations, smooth and porous concrete test panels were tested. The results show that the noise level of the perforated concrete pavement is 10dB (A) and 3 dB (A) lower than that of the transverse and longitudinal grooved concrete. The longitudinal groove with the same groove parameters is 0.2 ~ 9.1dB lower than the transverse grooved concrete pavement A); Smooth concrete pavement noise level higher than the longitudinal groove cement concrete pavement about 3dB (A). Concrete road surface 1/3 of the center frequency of the continuous spectrum, and the main part of the noise between 200 ~ 2 000 Hz; the maximum sound pressure level corresponds to the frequency of 500 ~ 1 500 Hz; longitudinal groove and porous concrete pavement There is no noise spike in the spectrum curve, while obvious noise spikes appear in the transverse grooved concrete road surface. The noise spikes of the smooth concrete road surface are 200Hz larger than the transverse grooved concrete road surface and have a smaller peak value than the transverse grooved concrete road surface.