论文部分内容阅读
拉普拉斯支持向量机通过流形正则项能够利用未标记数据信息进行半监督学习。但其流形正则项中的数据邻接图由于没有利用数据的标记信息而不能准确表征数据流形结构,并且热核参数的经验式选择也无法保证算法的学习性能。为此,基于人类行为认知的思想构造一种新的数据邻接图:首先设计一种能够利用数据标记信息的行为相似性边权值,然后所提出的局部视角距离不仅反映邻域结构特性而且克服了热核参数选择的问题。在公共数据集上的实验验证了所提出算法的性能,最后将之应用于辐射源个体识别。