Microglia regulation of synaptic plasticity and learning and memory

来源 :中国神经再生研究(英文版) | 被引量 : 0次 | 上传用户:weisu890221
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Microglia are the resident macrophages of the central nervous system. Microglia possess varied morphologies and functions. Under normal physiological conditions, microgliamainly exist in a resting state and constantly monitor their microenvironment and survey neuronal and synaptic activity. Through the C1q, C3 and CR3 “Eat Me” and CD47 and SIRPα “Don\'t Eat Me” complement pathways, as well as other pathways such as CX3CR1 signaling, resting microglia regulate synaptic pruning, a process crucial for the promotion of synapse formation and the regulation of neuronal activity and synaptic plasticity. By mediating synaptic pruning, resting microglia play an important role in the regulation of experience-dependent plasticity in the barrel cortex and visual cortex after whisker removal or monocular deprivation, and also in the regulation of learning and memory, including the modulation of memory strength, forgetfulness, and memory quality. As a response to brain injury, infection or neuroinflammation, microglia become activated and increase in number. Activated microglia change to an amoeboid shape, migrate to sites of inflammation and secrete proteins such as cytokines, chemokines and reactive oxygen species. These molecules released by microglia can lead to synaptic plasticity and learning and memory deficits associated with aging, Alzheimer\'s disease, traumatic brain injury, HIV-associated neurocognitive disorder, and other neurological or mental disorders such as autism, depression and post-traumatic stress disorder. With a focus mainly on recently published literature, here we reviewed the studies investigating the role of resting microglia in synaptic plasticity and learning and memory, as well as how activated microglia modulate disease-related plasticity and learning and memory deficits. By summarizing the function of microglia in these processes, we aim to provide an overview of microglia regulation of synaptic plasticity and learning and memory, and to discuss the possibility of microglia manipulation as a therapeutic to ameliorate cognitive deficits associated with aging, Alzheimer\'s disease, traumatic brain injury, HIV-associated neurocognitive disorder, and mental disorders.
其他文献
The human brain contains an estimated 100 billion neurons that must be systematically organized into functional neural circuits for it to function properly.These circuits range from short-range local signaling networks between neighboring neurons to long-
Cognitive impairment caused by chemotherapy, referred to as “chemobrain,” is observed in approximately 70% of cancer survivors. However, it is not completely understood how chemotherapy induces cognitive dysfunction, and clinical treatment strategies for
Glucose is the essential and almost exclusive metabolic fuel for the brain. Ischemic stroke caused by a blockage in one or more cerebral arteries quickly leads to a lack of regional cerebral blood supply resulting in severe glucose deprivation with subseq
Parkinson\'s disease is the second most prevalent neurodegenerative disorder worldwide. Clinically, it is characterized by severe motor complications caused by progressive degeneration of dopaminergic neurons. Current treatment is focused on mitigating
Brain stimulation techniques offer powerful means of modulating the physiology of specific neural structures. In recent years, non-invasive brain stimulation techniques, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimu
Neuroinflammation and neurodegeneration are key components in the establishment and progression of neurodegenerative diseases including Alzheimer\'s Disease (AD). Over the past decade increasing evidence is emerging for the use of components of the cano
SRY-related HMG-box (Sox) transcription factors are known to regulate central nervous system development and are involved in several neurological diseases. Post-translational modification of Sox proteins is known to alter their functions in the central ne
Amyotrophic lateral sclerosis is the most common adult-onset neurodegenerative disease affecting motor neurons. Its defining feature is progressive loss of motor neuron function in the cortex, brainstem, and spinal cord, leading to paralysis and death. De
Much research has focused on the PI3-kinase and PTEN signaling pathway with the aim to stimulate repair of the injured central nervous system.Axons in the central nervous system fail to regenerate,meaning that injuries or diseases that cause loss of axona
Subarachnoid hemorrhage is a devastating disease with significant mortality and morbidity, despite advances in treating cerebral aneurysms. There has been recent progress in the intensive care management and monitoring of patients with subarachnoid hemorr