论文部分内容阅读
基于学习的超分辨率重建算法通过对图像的整体信息学习进行重建,没有对图像的内部结构信息特征进行分解考虑.基于图像的低秩稀疏分解理论,本文提出一种新的图像超分辨率重建算法.在研究图像矩阵的低秩部分与稀疏部分信息特征的基础上,结合图像自身蕴含的先验信息,本文分两步对图像恢复重建.首先,将图像的非局部自相似性先验信息引入图像的基本重建模型.在该模型下利用相似图像块矩阵的天然低秩性约束得到初始估计高分辨率图像.第二步,提出一种改进的字典学习算法恢复出初始估计高分辨率图像中缺失的高频成份信息,获得最终的高分辨率