求二面角的方法

来源 :语数外学习·高中版中旬 | 被引量 : 0次 | 上传用户:awaydown
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  空间角主要包括异面直线所成的角、直线与平面所成的角、二面角.二面角是指从一条直线出发的两个半平面所组成的图形.求二面角的大小是一类常见的问题.本文重点介绍求二面角大小的四种方法:定义法、向量法、面积投影法、三垂线定理法.
  一、定義法
  过二面角棱上的任一点,在两个半平面内分别作与棱垂直的射线,则两射线所成的角叫做二面角的平面角.一般地,要求得二面角的大小只需要求出二面角的平面角的大小即可.在求二面角的大小时,我们可以根据二面角的平面角的定义来求解.首先在二面角的棱上选取一点,在两个面内作棱的垂线,则两条垂线的夹角,即为二面角的平面角,求得平面角的大小即可得到二面角的大小.
  例题:
  解:
  利用定义法求二面角的大小的关键是作出二面角的平面角.在作图的过程中要充分利用题目条件中隐含的垂直关系,如等腰三角形三线合一的性质、菱形或正方形的对角线相互垂直、直角三角形中勾股定理及其逆定理等.另外在构造二面角的平面角时,常用的方法还有垂面法,即经过两个面的垂线的平面与两个平面的交线所夹的角即为二面角的平面角.
  二、三垂线法
  三垂线法是指利用三垂线定理求作二面角的平面角,求得二面角大小的方法.在求作二面角的平面角时,需过其中一个面内的一点作另一个面的垂线,再经过垂足作棱的垂线,连接该点与棱上的垂足,进而构造出与二面角的平面角相关的角,再结合图形中的垂直关系求得二面角的大小.以上述例题为例.
  解:
  此法与定义法的不同之处是将所求二面角的相关角置于直角三角形中,从而使解题的过程更加简洁.
  三、向量法
  向量法是通过空间向量的坐标运算,将所求的二面角转化为两个平面的法向量的夹角的方法.解题的思路是通过建立空间直角坐标系,求出两个平面的法向量,根据向量的数量积公式求出夹角,再利用法向量的夹角与二面角的关系来确定二面角的大小.值得说明的是,二面角的平面角与法向量的夹角的关系是相等或互补.以上述例题为例.
  解:
  向量的引入降低了立体几何问题的难度,但对同学们的运算能力提出了更高的要求.求法向量的原则是先找后求,即如果存在一条已知的直线与二面角的某一个平面垂直,则该直线的方向向量即可视为此平面的法向量.
  四、投影法
  投影法,即为构造出二面角的两个平面中的一个平面在另外一个平面内的投影,从而利用此平面与其投影的夹角θ来判断所求二面角的大小的方法.若该平面与其投影的面积分别为 S1,S2,则与所求二面角的关系有两种,即相等或互补.以上述例题为例.
  解:
  在本题中,三角形 ECB 与其在面上的投影 EOC 的夹角即为所求二面角的补角,而两角互补,则其正弦值相等,所以可直接利用投影法来求解.
  一般地,求二面角的问题主要有两类,即求有棱二面角的大小和无棱二面角的大小,虽然图形有所不同,但解题的方法基本上一致.同学们在解题的过程中要注意仔细审题,择优而用.
  (作者单位:江苏省大丰高级中学)
其他文献
新定义型创新题常常以“问题”为核心,以“探究”为途径,以“发现”为目的,以所学知识为依托,重点考查同学们理解问题、解决问题的能力.新定义型创新题一般会给出一些新设定的定义及运算法则,要求同学们根据新定义及运算法则,结合已有的知识、经验,将问题转化为熟悉的问题,运用所需的知识解题.下面以几道题为例,谈一谈求解新定义型创新题的方法.  例1.若x ∈A,则∈A,则称 A 是伙伴关系集合,集合的所有非空
期刊
高三的复习时间尤为宝贵,教师如果能找到事半功倍的方法,就能帮助学生节省复习的时间,提高复习的效率。在复习课上,一些教师会把知识点分成一个个模块,便于学生分类记忆。但是,考虑到这种复习模式太过单一,也缺乏生气,笔者便在此基础上稍作调整,将诗词鉴赏与写作训练结合起来,取得了较好的收效。接下来,笔者就分享一下自己的心得,希望能给大家带来帮助。  一、引导学生为古诗词分类  不少学生在复习古典诗词时提到:
期刊
引导学生广泛地积累写作素材,是每一位语文教师的任务。针对如何引导学生积累素材这一问题,笔者展开了深入的探索与研究,总结出两种方法,希望能给大家带来帮助。  一、开展阅读活动,引导学生积累文本中的写作素材  如果说阅读是“输入的过程”,那么写作就是“输出的过程”。教师想要引导学生积累写作素材,不妨组织他们阅读经典作品,让他们一边阅读作品一边吸收知识,积累文本中的写作素材。具体来说,可以这样做:  首
期刊
一般情况下,我们常用等差数列的前 n 项和公式来求等差数列的和,用等比数列的前n项和公式来求等比数列的和.当遇到一些非常规的数列求和问题时,我们往往需要采用一些技巧.下面,笔者介绍三种求非常规数列的和的技巧,供大家参考.  一、错位相减  错位相减适用于求由一个等差数列和一个等比数列的乘积构成的数列的和.在求和时,需把每一项都乘以等比数列的公比q,然后将和式向后错开一位,把同次幂的项相减,使其构成
期刊
含参不等式恒成立问题在高考中扮演着“常客”的角色,是一类综合性较强、难度较大的问题.求不等式恒成立问题中参数最值的问题的思路和方法有很多,如分离参数法、数形结合法、函数最值法、分类讨论法、导数法等.本文结合一道典型例题,谈一谈求不等式恒成立问题中参数最值的三种方法.  例题:恒成立,求 a 的最大值.  本题主要考查了求不等式恒成立问题中参数最值的的方法.要求得a 的最值,我们需要将 a 分离出来
期刊
三角形面积的最值问题一般比较简单,但抛物线中的三角形面积最值问题却较为复杂,这类三角形的面积常与动点的坐标有关,因而此类问题的难度一般较大.解题时需灵活运用平面几何知识、函数的图象和性质、基本不等式、三角形的性质和面积公式、抛物线的定义和性质等知识.那么,如何解答此类问题呢?一般可运用构造法和分割法来求解.下面我们结合实例来进行探讨.  一、构造法  构造法是指通过添加辅助线,构造出三角形的底或高
期刊
对于简单的函数单调性问题,我们一般直接分析函数的解析式和图象,利用函数单调性的定义,便能快速求得问题的答案.对于较为复杂的函数单调性问题,如函数中含有高次式、指数式、对数式,我们常借助导数法来解题.而运用导数法来解答较为复杂的函数单调性问题,能将复杂问题简单化,提高解题的效率.  运用导数法解答函数单调性问题,一般有以下几个步骤:  1.根据已知条件,明确函数 y = f (x) 的定义域;  2
期刊
立体几何中的线面角问题是高中数学中“老生常谈”的一类问题.此类问题侧重于考查同学们的空间想象和运算能力.解答这类问题的思路一般有两种:借助直接法和向量法.本文以一道典型题目为例谈一谈解答立体几何中线面角问题的思路.  例题:  要解答本题,我们需先结合图形找出对应的边、角及其关系,然后结合直线与平面所成的角的定义找出对应的线面角以及线面角所在三角形的边长,根据正弦函数的定义求得直线 VB 与平面
期刊
求數列前 n 项的和问题是各类数学试卷中的“常客”,是高考数学必考的内容之一.因此,熟练掌握一些求数列和的技巧是很有必要的.笔者总结了三种求数列的途径,供大家参考.  一、巧用公式法求和  一般来讲,运用公式法解答数列求和问题,需先找出数列的通项公式,或者明确数列的首项、公差、公比、项数,然后将其代入等差数列的前 n 项求和公式或等比数列的前 n 项求和公式求解,即可求出数列的和。  例1.  解
期刊
導数法是指通过对函数进行求导,研究导函数的性质以达到解题目的的方法.运用导数法可快速判断出函数的单调性、求出函数的单调区间、求得函数的最值.下面,我们结合实例来谈一谈如何运用导数法解答两类函数问题.  一、求函数的单调区间  我们知道,函数 f(x)在某个区间(a,b)内的单调性与其导函数 f′(x)的关系为:若 f′(x)>0,则 f(x)在这个区间上是增函数;若 f′(x)<0,则 f(x)在
期刊