论文部分内容阅读
冬小麦叶绿素含量的准确预测,可为冬小麦田间精细化管理提供依据。采集冬小麦冠层400~900 nm范围反射光谱,经一阶微分预处理后,为了抑制由于连续波长自变量多重共线性对叶绿素含量诊断模型的干扰,利用Gram-Schmidt正交变换算法初步提取叶绿素敏感波长特征参数为848、620、677 nm。在定量模型的建立过程中,对比了传统随机样本集划分与以空间中样本间距离远近为指导的SPXY样本集划分方法,并讨论了大田冠层反射光谱对叶绿素浓度诊断的最优精度,研究结果表明,以620 nm和677 nm两个敏感波长结合SPXY样本划分方法建立的多元线性回归模型预测精度较高,且叶绿素质量浓度为0.3 mg/L分辨间隔时,建模决定系数和验证决定系数分别达0.730和0.739,可为无损检测冬小麦拔节期叶绿素含量提供技术支持。