论文部分内容阅读
为了降低单超球面一类支持向量机(One Class-SVMs,简称OC-SVMs)分类算法的错分率,提出了一种基于核的多超球面一类支持向量机分类算法.算法利用核空间中样本特征差异突出的特性,首先对样本在核空间进行K-均值聚类,然后使用OC-SVMs对各子类训练建立多超球面分类模型,实现分类判决.实验结果表明,算法有效地提高了分类精度.