论文部分内容阅读
为解决传统长短时记忆(LSTM)神经网络存在过早饱和的问题,使得对给定的图片能够生成更准确的描述,提出一种基于反正切函数的长短时记忆(ITLSTM)神经网络模型。首先,利用经典的卷积神经网络模型提取图像特征;然后,利用ITLSTM神经网络模型来表征图像对应的描述;最后在Flickr8K数据集上评估模型的性能,并与几种经典的图像标题生成模型如Google NIC等进行比较,实验结果表明本文提出的模型能够有效地提高图像标题生成的准确性。