论文部分内容阅读
自适应差分进化算法基于个体生成策略和控制参数自适应,无须人为设置参数,对问题有较好的适应性,但其收敛速度和精度有待提高。将具有较高预测精度的Kriging模型应用于自适应差分进化算法中,建立跟随种群变化的Kriging模型,通过模型极值点与种群最优个体竞争,对种群产生扰动,影响种群进化过程,改善算法的收敛速度和寻优性能。对10个典型测试函数的测试结果表明,该算法较标准和自适应差分进化算法收敛速度加快,收敛精度提高,且具有更好的稳定性。将基于Kriging的差分进化算法应用于苯乙烯装置的流程优化,操作运行费