论文部分内容阅读
探讨广义回归(GRNN)神经网络在企业盈利能力预测上的优势及应用前景.利用文献资料、MATLAB7.0软件中的神经网络工具箱分剐构建企业盈利能力的GRNN预测模型和BP预测模型,对样本进行拟合和预测并对两者的拟合和预测性能进行比较.GRNN的最优光滑因子为0.05;BP神经网络的隐含层数定为10.从拟合效果看,GRNN和BP预测模型的平均误差率分别为0.5687%和1.6008%.从预测效果看,两者的平均误差率分别为2.1678%和2.5176%.GRNN充分体现了在小样本预测中的优势,预测效果优于BP网