论文部分内容阅读
针对自然语言处理的文本情感分类问题,提出一种基于集成学习的文本情感分类方法;基于微博数据的特殊性,首先对微博数据进行分词等预处理,结合词频-逆文档频率(TF-IDF)和奇异值分解(SVD)方法进行特征提取和降维,再通过堆叠泛化(stacking)集成学习的方式进行分类模型融合。结果表明,模型融合对文本情感分析的准确率达到93%,可以有效地判别微博文本的情感极性。