【摘 要】
:
针对郊狼优化算法全局搜索能力不足,易陷入局部最优的缺陷进行了研究,在郊狼优化算法寻优进程中引入变形的精英保留策略,并在郊狼成长过程中加入环境影响因子,再将成长后的郊狼带入kent映射遍历搜索空间,强化算法的开采能力和搜索性能,提出了一种改进郊狼优化算法,数值实验表明,该算法具有较优的性能。以全社会经济成本和碳排放量为决策目标,构建了一个电动汽车充电站选址定容双层规划模型,并将改进后的郊狼优化算法求
论文部分内容阅读
针对郊狼优化算法全局搜索能力不足,易陷入局部最优的缺陷进行了研究,在郊狼优化算法寻优进程中引入变形的精英保留策略,并在郊狼成长过程中加入环境影响因子,再将成长后的郊狼带入kent映射遍历搜索空间,强化算法的开采能力和搜索性能,提出了一种改进郊狼优化算法,数值实验表明,该算法具有较优的性能。以全社会经济成本和碳排放量为决策目标,构建了一个电动汽车充电站选址定容双层规划模型,并将改进后的郊狼优化算法求解该规划模型,验证了该算法的可行性与有效性。
其他文献
机械制造中的产线分拣作业具有问题与数据的双重复杂性,为了对分拣操作进行优化以提高生产效率,设计了一套分拣作业的数据表示方法与一种基于种群优化的演化式算法,同时整理并公开了一个真实的工业数据集。数据表示方法通过借鉴词袋模型对原始作业数据进行抽象表示;演化式算法使用深度强化学习初始化遗传算法中的种群,同时引入了精英保留策略以提高算法的优化能力。最后,将提出的算法与其他算法在真实的工业数据集与旅行商问题
针对多模态情感分析中的模态内部特征表示和模态间的特征融合问题,结合注意力机制和多任务学习,提出了一种基于注意力的多层次混合融合的多任务多模态情感分析模型MAM(Multi-level Attention and Multi-task)。首先,利用卷积神经网络和双向门控循环单元来实现单模态内部特征的提取;其次,利用跨模态注意力机制实现模态间的两两特征融合;再次,在不同层次使用自注意力机制实现模态贡献
针对短文本缺乏足够共现信息所产生的词与词之间弱连接,且难以获取主题词的情况,导致面向短文本分类工作需要人工标注大量的训练样本,以及产生特征稀疏和维度爆炸的问题,提出了一种基于注意力机制和标签图的单词共生短文本分类模型(WGA-Bert)。首先利用预先训练好的BERT模型计算上下文感知的文本表示,并使用WNTM对每个单词的潜在单词组分布进行建模,以获取主题扩展特征向量。其次提出了一种标签图构造方法捕
目前已有的蚁群算法优化的特征选择方法,大多采用的是以属性依赖度和信息熵属性重要度作为路径上启发搜索因子,但这类搜索方法在某些决策表中存在算法早熟或搜索到的特征子集包含了冗余特征,从而导致选择精度显著下降。针对此类问题,根据条件属性在分辨矩阵中的占比提出了一种属性重要度的度量方法,以分辨矩阵重要度作为路径上启发因子,设计了一种基于分辨矩阵与蚁群算法优化的特征子集搜索方法,该算法从特征核出发,蚁群依次
针对LASSO方法构建脑功能超网络模型缺乏组效应解释能力和网络有偏性问题,提出两种基于组变量选择的近似无偏稀疏脑功能超网络模型来改善超网络的构建,分别为组最小最大凹惩罚方法和组平滑剪裁的绝对值偏差方法,并将其分别应用于抑郁症的分类研究中。分类结果显示,所提两种方法的分类表现均优于传统超网络模型,且组最小最大凹惩罚方法的分类准确率最高,达到86.36%。这结果表明若想构建有效的脑功能超网络模型,则不
近年来,图神经网络由于其丰富的表征和推理能力收到广泛的关注。然而,目前的研究聚焦于卷积策略和网络结构的调整以获得更高的性能,模型不可避免地面临单一模型局限性的约束。受到集成学习思想的启发,面向图神经网络创新性地提出一套集成学习框架(EL-GNN)。不同于常规的文本和图像数据,图数据除了特征信息外还包括了丰富的拓扑结构信息。因此,EL-GNN不仅仅将不同基分类器的预测结果进行融合,还在集成阶段额外补
在许多机器学习应用中,需要分析的数据可能由对称正定矩阵构成,而经典的欧氏机器学习算法处理这种数据的性能较差。针对此问题,提出一种新的基于对数欧氏度量学习的概率黎曼空间量化方法。该方法将对称正定矩阵看做对数欧氏度量下的黎曼流形上的点,采用对数欧氏度量学习距离函数将概率学习矢量量化方法从欧氏空间推广到对称正定黎曼空间。在BCI IV 2a脑电数据集上,该方法相较于概率学习矢量量化方法识别正确率提升20
针对算术优化算法(AOA)在搜索过程中容易陷入局部极值点、收敛速度慢以及求解精度低等缺陷,提出一种多策略集成的算术优化算法(MFAOA)。首先,采用Sobol序列初始化AOA种群,增加初始个体的多样性,为算法全局寻优奠定基础;然后,重构数学优化器加速函数(MOA),权衡全局搜索与局部开发过程的比重;最后,利用混沌精英突变策略,改善算法过于依赖当前最优解的问题,增强算法跳出局部极值的能力。选用12个
为改进传统K-means聚类算法中存在因随机选择初始质心而导致聚类结果不稳定且准确度低的缺点,出了基于改进量子旋转门人工鱼群算法的K-means聚类(IQAFSA)算法,该算法通过动态更新量子旋转门的旋转角,提高下一代更新方向准确度及更新速度。变异策略从传统的非门改为H门,既增加种群的多样性,又使全局搜索能力增强。最终使用所改进算法选取K-means的初始质心再进行聚类。通过UCI数据的测试以及在
针对现有基于深度神经网络的工业过程故障诊断方法存在网络结构设计繁琐及参数寻优耗时等问题,提出了一种基于网络结构搜索的工业过程自动故障诊断方法(Automatic Fault Diagnosis,AutoFD)。该方法采用AutoFD网络结构搜索算法,来自动完成卷积神经网络的网络结构设计和网络参数寻优,在此基础上,首先通过在原始数据上施加操作生成新通道,接着利用表现预测加速获取通道适应性排序的过程,