论文部分内容阅读
提出一种捆绑子空间分布隐马尔可夫模型的训练方法。该方法利用多变量相关系数将语音信号的特征向量进行子空间划分;利用k均值算法捆绑特征向量子空间的高斯分布,得到子空间高斯分布的原型,减少模型的参数。通过实验,用该方法训练的捆绑子空间隐马尔可夫模型,不仅提高了识别器的精确度和识别速度,而且节省了存储空间。