论文部分内容阅读
针对传统火灾探测技术存在的不稳定、误判率高等缺点,通过分析室内火灾图像与常见干扰光源图像的特点,提出一种基于人工神经网络的火焰图像检测技术。对火焰图像的基本特性进行分析,利用火焰图像序列的面积重叠率和中心相对移动率以及颜色等信息,结合实现学习向量量化(LVQ)神经网络融合技术,对视频序列图像中火焰的自动检测。仿真试验结果表明,基于LVQ神经网络的信息融合算法的网络收敛速度较快,有较高的火灾火焰识别准确率。