Clustering and Data Analysis

来源 :留学 | 被引量 : 0次 | 上传用户:shaofenglanzi
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  1. Introduction
  Clustering is a process of sorting objects, elements or data into groups according to their similarity or dissimilarity. In this thesis, topological foundation and several approaches are going to be explained.
  2. Definition
  In a set of data, a cluster is a group of elements in which the elements are more similar to each other than elements in other clusters. We can put these elements into a metric space to measure the similarity between them by a "distance". This function’s purpose would be measure the similarity between two elements. Given a set X, a metric about X is a function X × X → R such that
  1. d(x; y) ≥ 0 for all x; y ∈X and d(x; y) = 0 i x = y.
  2. d(x; y) = d(y; x) for all x; y ∈ X.
  3. d(x; y) ≤ d(x; z) d(z; y) for all x; y; z ∈ X.
  A pair (X; d) is called a metric space. To form a cluster, we first define a relation x ~R y as
  x ?R x′ iff d(x; x′) ≤ 2R
  in which R ∈ R and R ≥ 0. This show these two element are similar. Then we can find a equivalence class accord to relation x ~R y defined with following: if there exists a sequence of elements x0, …… xn such that x = x0 ?R x1, ……, xn?1 ?R xn = y, then x ~R y.
  Now set of equivalence classes about x forms a partition of the whole set, all elements in this class are more similar to each other comparing to elements not in the class--the cluster. Different functions aiming different type of data input. For data which can be quantify, they can be put into Rn then distance between two elements can be calculate. If data can’t be quantified, then for C elements, a symmetric matrix C\C can be build and some function can be used to determine the similarity.
  3. Clustering and data analysis
  Clustering is one of the most vital task of data analysis, because clusters and process clusters form can indicate important information and underlying pattern which can’t be provided by other methods.
  4. Clustering algorithms
  All clustering methods divide elements into groups in which elements are similar to each other using a similarity standard.
  4.1 Hierarchical Clustering
  Trying to form cluster, we would find that different threshold R form clusters with different size. If the threshold is 0, then the clusters would each only contain one element; As R increases, elements become connected and multiple clusters joined together and become one cluster. We can informally defines, that hierarchical clustering is the process finding such a hierarchy of clusters within a set of elements. We can use dendrograms shown hierarchy intuitively in (Figure 1.1), where each horizontal segment represent components being connected.   Bottom-up hierarchy is called an agglomerative clustering. We start from R = 0, when there are as many connected components as the number of individual points, as well as the number of clusters(Figure 1.2). As R increases, points start to become connected (Figure 1.3). At last, all elements in the data set are included in one cluster (Figure 1.1).
  4.2 K-means Clustering
  K-means Clustering is one of the most popular Flat Clustering algorithm. Unlike hierarchical clustering, flat clustering is focused on find the suitable R value.
  4.3 Which one is better?
  It’s hard to say which method is better, since both of them have their advantage.
  5. Clustering in Data Analysis Examples
  The clustering data analysis example I use is the relation between GDP per capita and Fertility rate.
  In our situation, there are some countries that have too few population so the data is missing. These data should be filtered out first. Since all data are in real number, we can map data into a Euclidean space. Many points locate near the x-axis, and some other near the fertility rate 2. This shows that there are many countries that have low GDP per capita have higher fertility rate, countries that have relatively higher GDP per capita have fertility rate around 2(Figure 3.1).
  As the threshold increases, there are three clusters forming: cluster with F between 4 and 5, and with G under 5000$; second one is located at the left-bottom corner of the graph, with fertility rate around 2 and G roughly around 10000$; last one is the cluster with G from 30000$ to 50000$ and fertility rate around 2. In the first cluster, Congo rep, Ethiopia, Iraq, and South Sudan are suffer from poverty or war and have a high fertility rate with a low income level. The second cluster include countries such as China, Russia etc, rapidly growing recently. The third group are mostly consist of MDCs including UK, France, Canada etc. These countries are all highly developed and most of them have fertility rate less than two. Pattern of these three cluster actually is a strengthening evidence for the theory of demographic transition.
  Figure 3.3 almost exactly give the partition of developing countries and developed countries.
  6. Conclusion
  Clustering is a very effective method in data analysis. I believe that the power of clustering is shown in the example about demo-graphics, in which clustering revealed three groups of countries that each on a different stage of demographic.
  丁立人
  年齡:17
  城市:北京
  年级:12
  目标专业:数学,计算机科学
  在夏校学习的一个月以来,我发现到应用拓扑学和之前初高中学的数学是完全不同的,应用拓扑和它的基础学科之一即线性代数对我来说是巨大的挑战。学习过程中给我留下印象最深的是聚簇算法,这是一种可以把有相似特征的数据归于几个相应的群中,还有空间变化,即通过函数将一个向量空间转化为另一个。从有所了解到能够写出这篇论文,我的进步绝不仅限于应用拓扑学相关的知识,还培养了独立研究的能力,并让我对高等数学更为严谨的逻辑有了一定的认识。
  在论文中,我主要介绍了聚簇算法和拓扑的联系,以及用人口学相关的例子介绍了一种聚簇算法。
其他文献
新西兰教育国际推广局《新西兰教育新闻月报》最新消息,新西兰将投票通过一项新的法案,旨在为全国1—8岁的儿童提供学习第二语言的机会。  新西兰议会奥克兰中央选民成员Nikki Kaye女士表示:“学习多种语言会带来在认知、文化、社会和经济等多方面的益处。新西兰是一个多元化的国家,境内现有160种语言正在使用。此次推行的法案将要求教育部顺从民意,设定至少10种优先语言,并在中小学推广教授这些语言。届时
一个人创业无非就是两种驱动力,一种是环境所逼,为了生计,不得不另辟蹊径;一种是内心的驱动,不管外部情况怎么样,就是要搞一番事业。显然,“凤凰计划”第三批(2012年)海外高层次人才蓝海电视台共同创始人和董事长顾宜凡,属于后者。  “创业就是发现和填补蓝海”  1980年,顾宜凡考入西安交通大学信息与工程系,“那个时候信息与控制工程是最时髦的专业,我对此充满好奇,但我并没有把它当作一生追求的目标。”
2015年是美国芝加哥大学成立125周年。作为文理教育(博雅教育)的发源地,芝加哥大学“独立思考、挑战权威”的精神不断激励着一代又一代毕业生。自1890年创立以来,芝大以人文关切和科研贡献引领了世界新的思考方式,先后有89位诺贝尔奖获得者,其中包含了世界上首屈一指的28枚诺贝尔经济学奖—如首位华裔若贝尔奖获得者杨振宁(芝大1948届博士)、李政道(芝大1950届博士)、崔琦(芝大1963届硕士),
“要出国,找中信”。中信银行出国金融服务通过搭建广阔的平台,将银行海外分支机构、旅游签证服务机构、留学中介机构等优质资源整合在一起,发挥平台综合优势,服务于客户的出国金融需求。  毕业于对外经济贸易大学国际贸易学专业的张丹,从事金融服务的工作有着得天独厚的优势。“经济管理类的学科是诸多海外学子留学深造所青睐的专业之一,在工作中,我会结合自己的专业优势,帮助客户为子女挑选学科的合适细分方向,为他们分
身在亚洲,心向世界,新加坡南洋理工大学商学院依靠多元、卓越的办学理念,在飞速变化的世界经济形势下,瞄准中国,逐浪而上。  十年树木,百年树人。  一个国家的兴旺发达,离不开卓绝的人才与卓越的教育。而卓越教育的背后,是历史的沉淀,是时间的积累,是几代人携手奋进,是一个国家和社会的共同塑造的成果。  人们常说,教育需要厚积薄发,但从古至今,后来居上者亦不乏有之。在20多年的时间里,是什么让一所学校冲出
2015年年底某教育盛典上,李亚鹏首次以培德书院国际学校董事长的身份在教育圈亮相。培德书院也因为这位明星董事长而进入大众视线,成为人们关注的焦点。  培德书院位于北京顺义区的罗马湖畔,  《留学》到访时,适逢北京刚遭遇过千禧年后最强冷空气的侵袭,罗马湖十里冰封、略显萧杀,也有几眼清水从冰面的破口处汩汩冒着,似是一股底蕴的力量。坐落在旁的培德书院,由外望去庄严沉稳又谦恭平和,仿佛正安静地等待着访客的
导语:如何让自己的专业与将来的就业环境相契合,远离工商管理、酒店管理等易扎堆、难就业的热门专业?环球雅思总校校长王耀宁告诉你,学跟IT挂钩的文化管理专业更有前途。  专业选择,向来是升学人士纠结和困惑的问题,留学生扎堆选专业的现象一直存在。今年中国教育部留学服务中心曾发布《2012万名留学人员回国就业报告》,数据显示“管理学、经济学、理学和工学”四个学科的留学毕业生,占回国总人数的80%。  留学
足不出户,和名校老师一起远程做科研,深入探究自己感兴趣的领域, 该项目由世界顶尖大学在职教师带领学生完成相关科研项目,主要为金融、政治、经济、商科方向。根据学生的能力,分配不同的工作内容,包括但不限于分析文献、处理数据、数学建模、模型测试、结果校对、课题讨论等工作,直接参与项目的研究的核心内容。  课程时间:2个月  相关院校:哥伦比亚大学、纽约大学  路线行程:  课程开始时间:2019年1月 
很多家长和学生都深信,走出国门,进身国际著名的高等学府,正是迈向成功人生的坦途。  为人父母最关注的莫过于子女的教育问题,父母竭尽所能地为子女提供各种有利条件,让下一代开阔眼界,建立优越的人际网络,以便拥有足够实力在竞争剧烈的国际舞台中尽展所长,最终踏上青云之路。  很多家长和学生都深信,走出国门,进身国际著名的高等学府,正是迈向成功人生的坦途。  赴加升学 每年6万5千人  根据中国教育部201
2015年2月再次造访纽约前,我极其认真地给自己列了一份清单(to-do-list),当是弥补彼时的遗憾和错过。正是这单子,鞭策着我在纽约风雪夹击的凌厉寒冬里,脚下生风,从现代艺术博物馆(MOMA)穿越30多条街步行至古根海姆(Guggenheim)。白色的贝壳样建筑,在风雪拍打下更彰显如出水芙蓉且遗世独立一般的淡泊与冷清。恰与光怪陆离的纽约相映成趣。  “纽约琐记”  人们说,在纽约你可以完成任