论文部分内容阅读
基于忽略了梁截面剪切变形和转动惯量效应的Euler-Bernoulli梁理论,研究了轴向力作用下轴向功能梯度变截面梁的横向自由振动问题,将轴向功能梯度Euler-Bernoulli梁自由振动固有频率和临界荷载的计算转化为变系数常微分方程特征值问题。运用插值矩阵法可一次性计算出轴向功能梯度变截面梁各阶振动固有频率和临界荷载,分析了轴向荷载对轴向功能梯度Euler-Bernoulli梁自由振动固有频率的影响,即轴向压力使梁的第1阶固有频率降低,轴向拉力使梁的第1阶固有频率增大。在简支-简支梁(H-H)边界条件下、不同截面宽锥度系数c_b和截面高锥度系数c_h,且区间划分点数n为40时,本文计算结果与已有文献计算结果之间的最大相对误差不超过0.00768%;在简支-简支梁(H-H)、固端-自由梁(C-F)、固端-固端梁(C-C)这三种不同边界条件下,不同c_b和c_h,且n为40时,最大相对误差不超过0.101%,说明了本文方法的有效性和良好的计算精度。