论文部分内容阅读
This paper seeks a synthesis of Bayesian and geostatistical approaches to combining categorical data in the context of remote sensing classification.By experiment with aerial photographs and Landsat TM data, accuracy of spectral, spatial, and combined classification results was evaluated.It was confirmed that the incorporation of spatial information in spectral classification increases accuracy significantly.Secondly, through test with a 5-class and a 3-class classification schemes, it was revealed that setting a proper semantic framework for classification is fundamental to any endeavors of categorical mapping and the most important factor affecting accuracy.Lastly, this paper promotes non-parametric methods for both definition of class membership profiling based on band-specific histograms of image intensities and derivation of spatial probability via indicator kriging, a non-parametric geostatistical technique.