【摘 要】
:
针对基于卷积神经网络(CNN)的域自适应技术在提取可迁移特征的训练过程中,存在内部协变量移位的问题,提出一种多层域自适应滚动轴承故障诊断方法.首先,利用CNN提取原始振动数
【机 构】
:
昆明理工大学信息工程与自动化学院 昆明650500
论文部分内容阅读
针对基于卷积神经网络(CNN)的域自适应技术在提取可迁移特征的训练过程中,存在内部协变量移位的问题,提出一种多层域自适应滚动轴承故障诊断方法.首先,利用CNN提取原始振动数据的可迁移特征;其次,提出了多层域自适应和权重正则化项约束CNN参数,进一步减少可迁移特征的分布差异,从而解决域移位问题;最后,利用凯斯西储大学的滚动轴承数据集进行实验验证.结果 表明,该方法能够有效地减少源域和目标域之间的特征分布差异,提高CNN模型对目标域数据集的诊断性能,相对于最高层域自适应的故障诊断方法,所提方法能在两个数据集之间的迁移故障诊断中得到较高的分类识别结果.
其他文献
主轴轴承作为机床关键零部件,针对轴承故障信息比较复杂难以获取,并且故障数据样本少问题,提出了基于小波包混合特征和支持向量机(SVM)的数控机床轴承故障诊断方法.首先对轴
紫外激光具有波长短、速度快、加工精度高、热影响区小以及无损加工等优点,针对紫外激光加工过程中,不同参数对刻蚀结果产生不同的影响,实验中通过控制单一变量法,设计了扫描
为了提高自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)的分解能力和分解精度,解决CEEMDAN方法中噪声残留等问
智能故障诊断技术能有效保障机械设备安全运行,传统的轴承故障诊断通常假设标记的源域和未标记的目标域数据服从同一分布.然而,在实际的诊断场景中,轴承数据的条件分布和边缘
局部特征尺度分解(local characteristic-scale decomposition,LCD)方法在改善了经验模态分解(empirical mode decomposition,EMD)方法的同时,也继承了EMD的模态混叠问题.噪
针对电引爆装置在复杂电磁辐射环境中会通过电磁耦合产生感应电流,导致电引爆装置失火的问题,提出了一种基于锁相技术的非接触式感应电流检测方法.采用基于隧道磁阻效应的电
提出了一种基于核主成分分析(KPCA)方法和运用了Dropout策略的长短时记忆神经网络(LSTM)的轴承剩余寿命预测方法.首先,提取了振动信号的有效值、最大值、峰峰值、峭度等14个
驱动电机轴承健康状态是实现纯电动车可靠运行,避免发生安全事故的重要前提,针对纯电动车电机滚动轴承状态监测方法缺失的问题,提出一种基于稀疏自编码器(sparse auto-encode
轴承作为旋转机械设备的重要部件之一,利用监测数据对其开展性能退化评估及剩余寿命预测,对于提高设备可靠性、降低维修成本至关重要.针对传统数据驱动方法在特征提取中过度
针对单向阀振动信号易被噪声淹没和故障表征不明显的问题,提出了一种基于总变差降噪(TVD)和递归定量分析(RQA)的单向阀故障诊断方法.首先利用总变差降噪方法对振动信号进行降